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Abstract—Nowadays Internet routing attacks remain practi-
cally effective as existing countermeasures either fail to provide
protection guarantees or are not easily deployable. Blockchain
systems are particularly vulnerable to such attacks as they rely on
Internet-wide communications to reach consensus. In particular,
Bitcoin—the most widely-used cryptocurrency—can be split in
half by any AS-level adversary using BGP hijacking.

In this paper, we present SABRE, a secure and scalable
Bitcoin relay network which relays blocks worldwide through
a set of connections that are resilient to routing attacks. SABRE
runs alongside the existing peer-to-peer network and is easily
deployable. As a critical system, SABRE design is highly resilient
and can efficiently handle high bandwidth loads, including Denial
of Service attacks.

We built SABRE around two key technical insights. First,
we leverage fundamental properties of inter-domain routing
(BGP) policies to host relay nodes: (i) in networks that are
inherently protected against routing attacks; and (ii) on paths
that are economically-preferred by the majority of Bitcoin clients.
These properties are generic and can be used to protect other
Blockchain-based systems. Second, we leverage the fact that
relaying blocks is communication-heavy, not computation-heavy.
This enables us to offload most of the relay operations to
programmable network hardware (using the P4 programming
language). Thanks to this hardware/software co-design, SABRE
nodes operate seamlessly under high load while mitigating the
effects of malicious clients.

We present a complete implementation of SABRE together
with an extensive evaluation. Our results demonstrate that
SABRE is effective at securing Bitcoin against routing attacks,
even with deployments of as few as 6 nodes.

I. INTRODUCTION

Cryptocurrencies, and Bitcoin in particular, are vulnera-
ble to routing attacks in which network-level attackers (i.e.,
malicious Autonomous Systems or ASes) manipulate routing
(BGP) advertisements to divert their connections. Once on-
path, the AS-level attacker can disrupt the consensus algorithm
by partitioning the peer-to-peer network. Recent studies [17]
have shown that these attacks are practical and disruptive.
Specifically, any AS-level attacker can isolate ∼50% of the
Bitcoin mining power by hijacking less than 100 prefixes [17].
Such attacks can lead to significant revenue loss for miners and
enable exploits such as double spending.

Problem Protecting against such partitioning attacks is chal-
lenging. On the one hand, local (and easily deployable)
countermeasures [17] fail to provide strong protection guar-
antees. These countermeasures include having Bitcoin clients
monitor their connections (e.g., for increased or abnormal
delays) or having them select their peers based on routing
information. On the other hand, Internet-wide countermeasures
are extremely hard to deploy. For example, systematically
hosting Bitcoin clients in /24 prefixes (to prevent more-
specific prefix attacks) requires the unlikely cooperation of all
Internet Service Providers hosting Bitcoin clients in addition
to a considerable increase to the size of the Internet routing
tables. Worse yet, even heavy protocol modification such as
encrypting all Bitcoin traffic would not be enough to guarantee
Bitcoin safety as AS-level attackers would still be able to
distinguish (and drop) Bitcoin traffic using transport headers.

SABRE: A Secure Relay Network for Bitcoin In this paper,
we present SABRE, a secure relay network which runs along-
side the existing Bitcoin network and which can protect the
vast majority of the Bitcoin clients against routing attacks. Un-
like existing countermeasures, SABRE secures Bitcoin against
routing attacks in a way which: (i) provides strong security
guarantees to any connected client by enabling it to learn and
propagate blocks; (ii) is partially deployable; and (iii) provides
security benefits early-on in the deployment, with as little as
two relay nodes. We built SABRE based on two key insights.

Insight #1: Hosting relays in inherently safe locations Our
first insight is to host SABRE relay nodes in locations that: (i)
prevent attackers from diverting relay-to-relay connections, so
as to secure SABRE internal connectivity; and (ii) are attractive
(from a routing viewpoint) to many Bitcoin clients, so as to
protect client connections to the relay network. We do so
by leveraging a fundamental characteristic of BGP policies,
namely, that connections established between two ASes which
directly peer with each other and which have no customers
cannot be diverted by routing attacks. In SABRE, only such
ASes are considered for relay locations.

Using real routing data, we show that such safe locations
are plentiful in the current Internet with 2000 ASes being
eligible. These ASes include large cloud providers, content
delivery networks, and Internet eXchange Points which already
provide hosting services today and therefore have an incentive
to host SABRE nodes. We also show that SABRE deployments
with 6 nodes are already enough to protect 80% of the clients
from 96% of the AS-level adversaries (assuming worst case
scenario for SABRE).

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA
ISBN 1-891562-55-X
https://dx.doi.org/10.14722/ndss.2019.23252
www.ndss-symposium.org

apmaria@ethz.ch
gimarti@student.ethz.ch
jan.m.muller@me.com
lvanbever@ethz.ch


Insight #2: Resiliency through software/hardware co-design
As a publicly-facing and transparent network, SABRE is an
obvious target for attackers who could, among others, craft
(D)DoS attacks against its publicly-known nodes to disrupt
it. To protect SABRE deployments against such attacks, our
second insight is to leverage the fact that most of the relay
operations are communication-heavy (propagating information
around) as opposed to being computation-heavy. In addition
to that, the content (block) that the relays need to propagate
each time is predictable and small in size. These properties
enable us to offload most SABRE operations to hardware,
using programmable network devices. Thanks to this software-
hardware co-design, SABRE relay nodes can sustain up to Tbps
of load.

We show that our relay node design is practical by im-
plementing it in P4 and connecting it to an extended regular
Bitcoin client. P4 [19], [15] is a new programming language
which allows to specify the behavior of network data planes.
Besides being general enough to support SABRE, our analysis
indicates that SABRE memory requirements are within the
capabilities of today’s P4 switches.

Contributions Our main contributions are:

• The design of SABRE, a novel relay network that prevents
AS-level adversaries from partitioning it (Section III).

• An algorithm for positioning SABRE nodes in selected
ASes so as to minimize chances of a successful routing
attack against the Bitcoin system (Section IV).

• A novel software-hardware co-design for SABRE relay
nodes which enables them to operate seamlessly under
high load (Section V).

• A measurement study showing the effectiveness of
SABRE in protecting Bitcoin clients together with the
inability of existing relays networks to provide such
protection (Section VI).

• A complete implementation of SABRE, including the P4
code to run on programmable network switches [7] along
with an extended Bitcoin client that can connect to them
(Section VII).

• An analysis of the incentives for candidate ASes to host
SABRE nodes (Section VIII).

Although SABRE focuses on Bitcoin, its design principles
can be applied to protect other Blockchain systems from
routing attacks. We discuss the broader applicability of SABRE
in Section IX.

II. BACKGROUND

In this section, we present an overview of BGP and how it
can be misused (Section II-A), before introducing Bitcoin and
the concept of relays (Section II-B).

A. Border Gateway Protocol (BGP)

The Internet consists of over 60k individual networks,
known as Autonomous Systems (ASes), which rely on
BGP [48] to exchange information about how to reach 700k+
IP prefixes [10]. Each AS originates one or more IP prefixes
which are then propagated AS-by-AS.
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Fig. 1: The effectiveness of a malicious AS in diverting traffic
using BGP hijacks depends on its position and on whether she
originates existing prefixes or longer ones. Here, AS 2 attracts
traffic from all ASes when originating 7/24 (a), but only from
AS 1 and 3 when originating 7/8 (b).

Policies BGP is a single-path and policy-based protocol. Each
AS selects one single best route to reach any IP prefix—
including self-owned ones—that it selectively exports to its
neighboring ASes (omitting the AS from which it learned the
route). These selection and exportation processes are governed
by the business relationships each AS maintains with its neigh-
bors. The most common business relationships are known as
customer-provider and peer-peer [27]. In a customer-provider
relationship, the customer AS pays the provider AS to get full
Internet connectivity. The provider provides such connectivity
by: (i) exporting to the customer all its best routes; and (ii)
exporting the prefixes advertised by the customer to all its
neighbors. In a peer-peer relationship, the two ASes connect
only to transfer traffic between their respective customers
and internal users. They therefore only announce their own
prefixes and the routes learned from their customers to each
other. Regarding route selection, an AS prefers customer-
learned routes over peer-learned ones and peer-learned routes
over provider-learned ones. If multiple equally-preferred routes
exist (e.g., if two customers announce a route to the same
prefix), an AS favors the route with the minimum AS path
length towards the prefix before relying on some arbitrary tie-
break [48].

Hijack BGP routers do not validate route advertisements. Any
malicious AS can create fake advertisements, known as BGP
hijacks, for any prefix, and advertise them to its neighbors.
Hijacks constitute an effective way for an AS to redirect traffic
directed to given destinations.

We distinguish two types of hijacks according to whether
the fake announcement contains: (i) a more-specific (longer)
prefix than a legitimate one; or (ii) an existing (equally
specific) prefix. In the former case, the hijacker AS will
attract all the traffic addressed to the more-specific prefix,
independently from its position in the Internet topology. This is
because routers forward traffic according to the most-specific
prefix matching it. In the latter case, the rogue advertisement
competes with the legitimate one. The amount of diverted
traffic then depends on the relative positions of the attacker
and the victim in the Internet topology.
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Fig. 1a illustrates an example of a more-specific attack in
which AS 2 advertises 7/24, a more-specific prefix of 7/8
which is advertised by AS 7. In doing so, AS 2 effectively
redirects the corresponding traffic from all ASes except AS 7.1
In contrast, Fig. 1b illustrates the effect of AS 2 advertising
7/8 alongside AS 7. AS 2 only manages to attract the traffic
from AS 1 and AS 3. Indeed, AS 1 learns two routes to 7/8
from its two providers (AS 2 and 5) and prefers the illegitimate
one from AS 2 because it is shorter. Similarly, AS 3 prefers
to reach 7/8 using the customer route learned via AS 2 over
the legitimate peer route learned via AS 5.

More-specific hijacks are more powerful but come with
drawbacks. First, such attacks are more visible since the
hijacked prefixes propagate Internet-wide. In contrast, existing
prefixes propagate in smaller regions [30]. For instance, in
Fig. 1b, while AS 4 and AS 5 learn about the hijacked prefix,
they do not propagate it further as they prefer the legitimate
announcement. Second, network operators often filter BGP
advertisements whose prefix lengths are longer than /24 [36].
This filtering effectively prevents more-specific attacks against
existing /24s.

By default, hijacking a prefix creates a black hole at the
attacker’s location. However, the attacker can turn a hijack into
an interception attack and make herself a man-in-the-middle
(MITM) by preserving at least one path to the legitimate ori-
gin [47], [31]. For instance, in Fig. 1a, AS 2 could selectively
announce 7/8 to AS 1 so as to keep a working path to the
legitimate origin via AS 3. Observe that AS 2 cannot achieve
the opposite interception attack, i.e., diverting the traffic from
AS 3 and redirecting it to AS 1, as it does not learn a path to
the legitimate origin via AS 1.

B. Bitcoin

Bitcoin is a decentralized transaction system which re-
lies on a randomized peer-to-peer network to implement a
replicated ledger, the Blockchain, which keeps track of the
ownership of funds and the balance of each Bitcoin address.
The Bitcoin network disseminates two types of information:
transactions and blocks. Transactions are used to transfer
value from one address to another, while blocks are used
to synchronize the state of the system. Bitcoin nodes are
identified by their IP address, connect to each other using TCP,
and exchange data in plain text. Bitcoin comprises around 10k
publicly reachable nodes [9] while 10× more nodes are behind
NAT [18].

Blocks are created by miners and contain the latest trans-
actions as well as a Proof-of-Work (PoW). A PoW is a
computationally-heavy puzzle, unique for every new block,
whose difficulty is regularly adapted such that it takes 10
minutes on average to generate a new block [44]. A newly
mined block is propagated network-wide and is appended to
the blockchain according to consensus, thereby yielding a
financial reward to its miner. Bitcoin participants unaware of
the latest blocks will waste their mining power and can be
fooled into accepting invalid transactions.

1Traffic from AS7 itself is not redirected as AS7 relies on internal routing
protocols, such as OSPF, to reach its own prefixes.

Relay networks are overlay networks maintained by a single
administrative entity which run alongside Bitcoin’s peer-to-
peer network. Relay networks aim at assisting the Bitcoin
network, not replacing it. The three most well-known relays
are: Falcon [3], FIBRE [2], and the Fast Relay Network
(FRN) [5]. These relay networks aim at speeding up block
propagation by relying on a system of high-speed relay nodes
and/or on advanced routing techniques. By connecting to these
relays, a Bitcoin client can alleviate the effects of bad network
performance that may otherwise affect the time needed to
acquire a new block.

III. SABRE: A SECURE RELAY NETWORK FOR BITCOIN

SABRE is a transparent relay network protecting Bitcoin
clients from routing attacks by providing them with an extra
secure channel for learning and propagating the latest mined
block. By transparent, we mean that the IP addresses of the
SABRE relay nodes will be publicly known (e.g. via a website)
and that every Bitcoin client is welcome to connect to them.
To benefit from SABRE, a Bitcoin client simply needs to
successfully establish a connection to at least one relay node.
SABRE relays contribute to the block propagation by receiving,
validating and transmitting new blocks to all connected clients.

To achieve its goals, the SABRE network must remain
connected at all times, even under arbitrary BGP advertise-
ments or extremely high load (Section III-A). SABRE leverages
two key insights to guarantee ceaseless operation: (i) smart
positioning of the relay nodes to secure its internal connections
and minimize the clients attack surface (Section III-B); and (ii)
a hardware/software co-design to enable relay nodes to sustain
almost arbitrary load (Section III-C).

A. Attacker Model

We consider a single AS-level attacker whose goal is to
partition the Bitcoin network into two disjoint components
S and N . To do so, she first diverts the traffic destined to
S or N by performing an interception attack using existing
and more-specific prefixes (Section II). The attacker then: (i)
identifies the Bitcoin connections by inspecting the network
and/or transport layer headers (i.e., by matching on IP ad-
dresses and/or TCP/UDP ports); and (ii) drops the connections
bridging the partition. Such an attack is powerful and can
effectively partition the Bitcoin network [17] causing revenue
losses and allowing double spendings. In fact, partitioning is
an effective attack against any Blockchain system as it prevents
nodes from communicating (see Section IX).

We assume that the attacker knows: (i) the IP addresses
of all SABRE nodes; along with (ii) the code running on
them. As such, the attacker can hijack the prefixes hosting
relay nodes and drop all traffic destined to them. Alternatively,
the attacker can issue multiple requests to the relay nodes
effectively performing a (D)DoS attack.

Example We illustrate our attacker model using Figure 2a
and 2b which depict a simple AS-level topology composed
of 9 ASes. ASB, ASD ASH and ASG host Bitcoin clients
which establish Bitcoin connections between each other (in
blue). ASX is malicious and aims at disconnecting the nodes
on the left side (S = {b1, d1, d2, d3}) from the others
(N = {h1, g1, g2, g3}). To that end, ASX intercepts the
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Fig. 2: SABRE protects the Bitcoin network from AS-level adversaries aiming to partition it. Without SABRE, AS X can split
the network in half by first diverting traffic destined to AS H and AS G using a BGP hijack and then dropping the corresponding
connections (Fig. 2b). With SABRE, the network stays connected (Fig. 2c).

Bitcoin connections directed to N by hijacking ASH and
ASG prefixes. As a result, ASX diverts all the connections
from S to N , and some more (e.g., the connection from h1 to
g1). We depict the diverted connections in red in Figure 2b.
Once on-path, the attacker drops the Bitcoin traffic crossing
the partition and forwards the rest normally. For instance, the
attacker does not drop the connection between h1 and g1 and
simply relays it from ASH to ASG untouched. Once the
attack is launched, nodes in S can no longer communicate
with nodes in N : the Bitcoin network is partitioned.

B. SABRE secure network design

We now explain the routing properties behind SABRE relay
locations and how they protect relay-to-relay, client-to-relay,
and relay-to-client connections from being disconnected by
routing attacks. We describe an algorithm for systematically
finding such locations in Section IV.

Protecting relay-to-relay connections A SABRE deployment
is composed of relays hosted in /24 prefixes which belong to
ASes that: (i) have no customer; (ii) peer directly; and (iii)
form a k-connected graph. These constraints protect relay-to-
relay connections from routing attacks for three reasons.

First, these constraints prevent any attacker from diverting
traffic between relays by advertising a more-specific pre-
fix, effectively forcing her to advertise existing prefixes and
thus compete with legitimate advertisements. Second, these
constraints prevent any attacker from diverting relay traffic
away from the ASes hosting relay nodes by advertising an
economically-preferred route. Indeed, the ASes hosting relays
follow the advertisements of their direct peers to reach each
other and have no customers (i.e. no better advertiser AS). As
such, the number of malicious ASes which can advertise an
equally-preferred route are limited to those that directly peer
with the ASes hosting relays. Finally, these constraints make
the chances for effective attackers to divert relay connections
to exponentially decrease as the connectivity of the relay graph
k increases. Indeed, BGP routers rely on an arbitrary tie-break
to select among equally-preferred routes (e.g., by choosing
routes learned from the lowest peer address [48]). Assuming
that the attacker is equally likely to win this tie-breaking, she

would only have a 3.1% (0.55) probability of disconnecting a
5-connected relay network. In Section VI, we show that well-
connected relay networks are numerous.

Protecting client-to-relay connections While we can host
relays in cherrypicked ASes, we cannot choose which ASes
host Bitcoin clients. Concretely this means that AS-level
adversaries hijacking relay prefixes can still divert connections
originated by Bitcoin clients to the relays.

In SABRE, we protect client-to-relay connections by further
restricting the locations in which we host relays to ASes
whose /24 advertisements tend to be preferred by ASes with
Bitcoin clients. Doing so we can lower the amount of traffic
malicious ASes can divert, i.e. maximize SABRE’s coverage.
While individual relays locations are unlikely to protect many
Bitcoin clients against all possible attackers, we show that
a relatively small set of relays often can (Section VI). This
design decision is motivated by the observation that Bitcoin
clients are concentrated in few hosting ASes [17].

Protecting relay-to-client connections Finally, an attacker
might try to divert the traffic sourced from the relay network to
the Bitcoin clients. For instance, an attacker could hijack the
prefixes of Bitcoin clients and drop the relay connections by
matching on any relay IP address. While this technique is more
cumbersome for the attacker (there are way more clients than
relays), it is nonetheless possible. SABRE prevents this attack
by obfuscating the traffic exchanged between the clients and
the relay nodes. This obfuscation forces the attacker to perform
full inspection (beyond L4 headers) on a possibly huge volume
of diverted traffic, rendering the attack highly impractical.
Observe that while encrypting the already-obfuscated traffic
would render even full inspection useless, encryption alone
would not help as the attacker would still be able to distinguish
Bitcoin traffic by matching on the destination IP.

SABRE relies on two techniques to obfuscate relay traffic.
First, the relays can modify their source IP addresses when
communicating with Bitcoin clients. This is possible as SABRE
uses connectionless communications between the relays and
the clients, enabling clients to accept packets with a different
source IP than the one they send traffic to. Second, Bitcoin
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clients can connect to SABRE relays via a VPN/proxy service.
Doing so would force the attacker to first find the mapping
between the proxy IP and the corresponding Bitcoin client.

Example Using Fig. 2c, we now explain how a SABRE
deployment of three relays, namely r1, r2 and r3, protects
against routing attacks such as the one shown in Fig. 2b by
securing intra-relay connectivity and maximizing coverage.

With respect to Fig. 2a, each Bitcoin client is now con-
nected to at least one relay node in addition to maintaining reg-
ular Bitcoin connections. Here, nodes g1, g2, g3 are connected
to relay r1 while node g1 is also connected to node r3. Hosted
in ASes that peer directly, relay-nodes protect their internal
connectivity against ASX’s hijacks. For instance, consider that
ASX advertises the /24 prefix covering r1 to ASC. Since
ASX is a provider of ASC, ASC discards the advertisement
as it prefers to route traffic via a peer instead. At the same
time, forming a 2-connected graph allows the relay network
to sustain any single link cut. A link cut can be caused by
a failure, an agreement violation or an unfiltered malicious
advertisement from another direct peer.Observe that this would
not hold if r2 was not deployed. Finally, the exact positioning
of relays is such that the paths towards them are more preferred
over those of the attacker. As an illustration, ASX can divert
the connection from ASG to ASD by advertising a more
attractive path to ASG (as a peer) than the one it originally
uses (a provider route, via ASF ). Even so, ASX cannot divert
the connection from ASG to ASB. Indeed, ASG will always
prefer its customer path over any peer path.

C. SABRE resilient software/hardware node co-design

As a transparent and accessible relay network, SABRE
nodes should be able to sustain high load, either caused by
legitimate Bitcoin clients or by malicious ones who try to
exhaust their resources. To scale, SABRE nodes rely on a
software/hardware co-design in which most of the operations
are offloaded to programmable network switches (e.g., P4-
enabled ones). We illustrate this deployment in Fig. 3 where
two SABRE nodes are connected to each other and to some
Bitcoin clients. One client talks directly to the controller via
the switch while the others talk only to the switch. Observe that
a software-based implementation of the relay node would also
protect Bitcoin against routing attack, yet it will be more prone
to (D)DoS attacks since it will have 2–3 orders of magnitude
lower throughput [34] compared to a hardware-based one.2

2We discuss the possibility of a software deployment of SABRE in §VIII.

SABRE’s relay design is based on the observations that:
(i) the content that needs to be cached in the relay node
is predictable and small in size, consisting in the one or
two blocks of 1MB that were most recently mined; and
(ii) most of the relay operations are communication-heavy,
consisting in propagating the latest known block to many
clients and distinguishing the new ones. The former allows
for effective caching while the latter allows for a partially
hardware implementation in programmable network devices.
This software/hardware co-design enables SABRE nodes to
operate at Tbps and therefore sustain large (D)DoS attacks.
Indeed, Barefoot Tofino programmable network devices can
deal with as much as 6.5 Tbps of traffic in the backplane [7].

While using programmable network devices enable high
performance, it does not make it easy due to the lack of a broad
instruction set and the strict limitations with respect to memory
and number of operations per packet. We overcome these
limitations with three techniques. First, our software/hardware
design seamlessly blends in hardware and software operations,
allowing to automatically escalate operations that cannot be
done in the switch to a software component. In SABRE, only
the validation of new blocks (which happens once every 10
minutes) needs to be escalated while all other requests are
served by the hardware over a UDP-based protocol. Second,
our implementation relies on optimized data structures which
are both memory efficient and require a fixed number of
operations per access. Third, we heavily precompute and cache
values that would need to otherwise be computed on the switch
(e.g., UDP checksums).

IV. SABRE SECURE NETWORK DESIGN

In this section, we first formally define the problem of
selecting the ASes to host SABRE relays in (Section IV-A) so
as to minimize the probability of a successful routing attack
against Bitcoin. We then describe an algorithm for solving this
problem (Sections IV-B and IV-C).

A. Problem Statement & Challenges

The security provided by SABRE depends on: (i) how se-
cure the intra-relay connectivity is, i.e., how many connections
an AS-level adversary needs to hijack in order to disconnect
the graph; and (ii) how much of the Bitcoin network is covered,
i.e., how likely it is that an AS-level adversary will be able to
prevent clients from connecting to all relay nodes.

We take both factors into consideration while constructing
a SABRE network by first setting the desirable level of intra-
relay connectivity (e.g., 2-connectivity), and then finding the
relay ASes that will maximize the Bitcoin coverage. Formally,
we define our problem as follows:

Problem statement Let G = (AS, E) be the AS-level
topology graph in which vertices (AS) correspond to ASes and
edges (E) to inter-AS links. Let also B ⊆ AS be the subset
of ASes that host Bitcoin clients and R ⊆ AS be the subset
of ASes that have no customers. Finally, let G′ = (R, E′)
be the subgraph of G induced by R that contains the subset
E′ ⊆ (R × R) of peer-to-peer inter-AS links. We define
A = AS × B as the set of all attack scenarios, namely all
pairs of ASes (x, v) in which AS x acts as AS-level adversary
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for AS v which hosts Bitcoin clients. Let S : R → A be
a function which, given a candidate relay, finds the subset
α ⊆ A of attack scenarios that this candidate relay protects
against. Let furthermore C : P(A) → R be a function (P(·)
denotes the power set) which, given a set of attack scenarios
α ⊆ A, quantifies their significance for the Bitcoin system
by computing the number of Bitcoin clients hosted in victim
ASes, i.e. C(α) =

∑
(x,v)∈α wv where wv is the number of

Bitcoin clients affected by the attack scenarios in α.

Given a desired number of relays N and a desired inter-
relay connectivity k, our problem is to maximize the number of
attack scenarios Bitcoin clients are protected against. Formally,
we aim at finding G′′, a subgraph of G′ induced by R′,
such that R′ ⊆ R; |R′| = N ; G′′ is k-connected; and
C
(⋃

ri∈R′ S(ri)
)

is maximized.

Challenges Solving the above problem optimally is challeng-
ing for at least three reasons. First, the amount of clients
protected by any subset of relays R′ depends on the union
of the sets of the attack scenarios each relay r ∈ R′ protects
against. As these are in general not disjoint, this problem
reduces to the maximum coverage problem. Second, finding k-
connected subgraphs in a random graph is difficult [22]. Third,
in order to find the attack scenarios a relay protect against, one
needs to predict the forwarding path each AS with Bitcoin
clients will use to reach each canditate-relay considering any
possible attacker.

We develop a heuristic to address the first two challenges
(Section IV-B) and an algorithm for finding the possible attack
scenarios for every attacker (Section IV-C).

B. Positioning SABRE Relays

As described above, positioning relays optimally maps to
solving a maximum coverage problem. Given the complexity,
we rely on a greedy approach which is shown to be effectively
optimal for the maximum coverage problem [26].

Our algorithm starts with an empty set R′ and the set
of candidate ASes R which satisfy the constraints listed in
Section III-B and are also contained in at least one k-connected
subgraph of at least N nodes, as only those can host one
of the relay nodes of a k-connected network of N relays. It
then iteratively adds relays to the set R′ aiming at maximize
the number of covered attack scenarios while preserving k-
connectivity for R′. This simple procedure runs in O(N) and
works well in practice (Section VI).

In particular, in each round, we consider as candidates
the set Rk ⊆ R \ R′ which are connected with at
least min{k, |R′|} of the already-selected ASes in R′. Then
we add the candidate r ∈ Rk that adds the maximum
weighted coverage to R′, i.e., the one with the maximum
C
(⋃

ri∈(R′∪r) S(ri)
)
− C

(⋃
ri∈R′ S(ri)

)
and we update R′

accordingly, i.e, R′ := R′ ∪ {r}. When we have selected all
candidates, so that |R′| = N , we return R′.

We show in Section VI that the resulting relay networks
can readily protect between 80% to 98% of the existing Bitcoin
clients (depending on the internal connectivity and number of
deployed nodes) from 99% of the potential attackers. The exact
algorithm for positioning the relay nodes can be found in the
Appendix A1.

Fig. 4: Shades illustrate ASV routing preference ranging from
white (most preferred) to black (least preferred). Traffic from
ASV to preferred AS is less likely to be hijacked.

C. Calculating covered attack scenarios

Having explained how we can position SABRE relays
based on the attack scenarios they cover, we now describe
how we compute these scenarios for each relay, i.e., how
we implement the function S. More specifically, we describe
how we predict, for each AS hosting Bitcoin clients and each
AS-level adversary, whether the hosting AS will prefer the
advertisements coming from the attacker AS over legitimate
announcements coming from relay ASes.

Our algorithm is based on the observation that, to check
whether a attacker AS (say ASM ) can divert traffic from a
victim AS (say ASV ) to to a relay AS (say ASR), we only
need to compare the path from ASV to ASR and from ASV
to ASM . If the path to ASM is more preferred then ASM
can successfully hijack traffic from an ASV to ASR. Path
preference is dictated by the business relationships established
between ASes together with the path length: customers are
preferred over peers, peers over providers, and shorter paths
over longer ones.

As an illustration, Figure 4 illustrates an AS topology in
which arrows indicate business relationships: providers are
drawn above their customer (ASV is the provider of ASA),
while peers are drawn alongside each other (ASH and ASV
are peers). The different shades indicate which advertisements
ASV prefers, ranging from white (most preferred) to black
(least preferred). ASV prefers advertisements learned from
ASA (its customer) over advertisements learned from ASH
(its peer) or from ASI (its provider). Likewise, ASV prefers
advertisements from ASE over the ones originated by ASD.
While both are learned via ASA (its customer), ASD is closer
to ASV (2 hops) than ASE (3 hops). Intuitively, Figure 4
depicts for any two ASes ASX and ASY whether ASV
would prefer ASX’s advertisements over ASY ’s, should both
advertise the same prefix. For instance, if a relay is hosted
in ASH (ASV peer), all the ASes that ASV can reach via
customer links (ASA–ASG) are possible attackers. Similarly,
if the relay is hosted in ASM then any other ASes (ASA–
ASL) can divert the corresponding traffic from ASV .

We describe the algorithm we use to compare the BGP
preference of two paths with a common start in Appendix A2.
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Fig. 5: The switch intercepts all incoming traffic, answers to all
UDP requests and redirects TCP traffic of whitelisted clients
to the controller. The switch contains the latest mined Block in
BlockMem and multiple components to track the connected and
banned clients (e.g.White/Black List, Connected) and detect
attacks (e.g. CheckSecret, SentLimit)

V. SABRE RESILIENT RELAY NODE DESIGN

We now explain the software/hardware co-design of a
SABRE node (Section V-A) and its operations (Section V-B)
which ensure that the node’s resources are not maliciously
exhausted and that benign clients are not denied service.

A. Hardware/Software Co-Design

Figure 5 illustrates SABRE’s software/hardware co-design.
It is composed of a programmable switch connected to a
modified Bitcoin client which acts as a controller.

The switch is responsible for: (i) serving client connections;
(ii) protecting the controller only from malicious clients; (iii)
propagating blocks; and (iv) distinguishing new blocks from
old ones. In contrast, the controller is responsible for validating
new blocks, advertising them to the connected clients and
updating the switch memory accordingly.

Bitcoin clients establish UDP connections with the switch
and (rarely) regular Bitcoin connections (over TCP) with the
controller. Switches only allow approved Bitcoin clients to
establish connections with the controller. As most clients
“consume” blocks rather than producing them, we expect most
clients to only interact with SABRE’s hardware component.

SABRE defines a UDP-based protocol to facilitate com-
munication between the Bitcoin clients and the switch as
well as between the switch and the controller. The protocol
is composed of 8 messages. Five of them are exchanged
between the switch and the clients: SYN, SYN/ACK, ACK,
GET SEQ, and ADV. The three remaining are sent between
the switch and the controller: NCONN, UPD, and BLK.

Similarly to TCP, SYN, SYN/ACK, ACK are used to
prevent spoofing attacks. GET SEQ, BLK and ADV relate to
block management. Specifically, GET SEQ enables a client
to request a particular segment of a block which is sent as a
BLK, while ADV enables a client to advertise a newly mined
block to the relay. The switch sends a NCONN to notify the
controller of new connections. The controller sends an UPD
followed by a BLK message to update the switch with the
latest block.
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(b) Transmitting Block

Fig. 6: (a) BTC client establishes a connection with the
switch using a 3-way handshake. (b) Relay advertises a new
block INV via the switch and transmits it using multiple BLK
messages after client requests using GET SEG messages.

The switch maintains three data structures to manage client
connections and track down anomalies: PeerList, Whitelist,
and Blacklist. PeerList contains information about connected
clients, i.e., those who successfully completed the three-way
handshake. Similarly, Whitelist stores clients that are allowed
to communicate with the controller directly. Blacklist contains
clients that have misused the relay and are banned. The switch
also maintains one data structure to store the latest block(s):
BlockMem. BlockMem is composed of indexed equal-sized
segments of a block together with precomputed checksums
for each segment. This data structure allows the switch to
timely reply with the requested segment avoiding additional
computations. Moreover, the switch contains two components
devoted to anomaly detection: SentLimit and CheckSecret.
SentLimit detects clients that requested a block too many times.
CheckSecret verifies during the handshake that a client is using
its true IP. Finally, the switch also maintains one data structure
for checking whether an advertised hash is new or known:
Memhash.

In the following, we describe the different operations
performed by the relay and how each of them modifies each
of the data structures. In Section VII, we show that our
design can sustain 1M malicious and 100k benign client
connections with less than 5 MB of memory in the switch. This
memory footprint is only a fraction of the memory offered by
programmable switches today [35], allowing the switch to be
used for other applications.

B. Relay operations

We now describe SABRE relay operations. The client and
controller are extended versions of the default Bitcoin client
and the switch is implemented in P4 [19]. Our protocol defines
four operations: (i) how regular Bitcoin clients connect to a
relay node; (ii) how a relay node propagates blocks back to
them; (iii) how a relay node receives and validates blocks
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(b) Updating switch

Fig. 7: (a) BTC client advertises a new block identified as
unknown by the switch. The client gets white-listed, allowing
it to connect directly to the controller. (b) If the received
block is valid, the controller updates the switch using an
UPDATE message carrying the block’s hash followed by a
BLK messages carrying the data.

transmitted by the clients; and (iv) how the controller updates
the switch memory upon receiving a new valid block.

Managing client connections In order to avoid spoofing
attacks, Bitcoin clients initialize connections to relay nodes
using a three-way handshake as shown in Figure 6a. As for a
normal TCP connection, the client first sends a SYN packet.
Upon receiving the SYN, the switch echoes back a secret value
calculated using the client’s IP address and UDP port in a
SYN/ACK packet. The client then includes this secret value
in the final (ACK) packet as a proof that it owns the source
IP address that it is using.

Upon successfully completing the handshake, the switch
adds an entry for the client’s IP and port number in the
PeerList and notifies the controller via a NCONN message.
The PeerList is implemented as a Bloom filter (BF) for
memory efficiency. Doing so, the switch verifies that an
incoming packet belongs to an established connection and
drops it otherwise. As BFs do not support listing all inserted
items, the controller stores the connections for future use (e.g.,
advertising new blocks and updating the PeerList).

Learning new blocks Relay nodes need to learn new blocks
that are mined. New blocks are transmitted to the relays
from regular clients. Being a network device with limited
computational capabilities, the switch is unable to validate
blocks. Thus, advertised blocks need to be transmitted to the
controller after they have been filtered by the switch.

As illustrated in Fig. 7a, the node advertises a block by
its hash to the switch using an ADV message. The switch
checks whether the hash is already known using the HashMem.
If the hash is not known, then the switch asks the client to
connect to the controller with a CTR message and stores its
IP in the Whitelist. If the transmitted block is legitimate the

client’s IP will stay in the whitelist for four days. The client
connects to the controller as if it was a regular Bitcoin client,
while the switch forwards the TCP traffic to the controller.
The switch only allows packets from white-listed clients to
reach the controller. Observe that a malicious miner cannot
monopolize or overload the controller with its connections as
even a pool with 30% of the hash power cannot keep more
than 172 whitelisted clients at any given moment.3

Even so, a malicious miner might still try to engineer block
races by flooding the relay node with multiple blocks simul-
taneously which will need to be validated by the controller.
To shield against this attack, the switch keeps the number of
active nodes that are white-listed. When this number exceeds
a predefined threshold (set based on the controller’s hardware
capabilities), the switch will stop whitelisting new clients. In
this case, the controller receives blocks from the nodes that are
already whitelisted. Indeed, these nodes are diverse enough,
with respect to mining power origin, to keep the relay up-
to-date, thanks to the expiry mechanism in the Whitelist. For
instance, any pool with at least 0.17% of mining power can
keep at least one node in the Whitelist forever. In essence,
the switch implements a simple-yet-efficient reputation-based
access-list to protect the controller from Sybil attacks.

Updating the switch with a new block If a newly-transmitted
block is valid, the controller updates the switch’s memory
with a new mapping of segment IDs to data segment that
corresponds to a particular block hash. The switch can then
transmit the segments to the clients upon requests. Observe
though that the switch sends data to a UDP socket. Thus, the
IP and UDP checksums need to be correct for the packet to be
accepted. The UDP checksum is calculated using a pseudo-
header and the one’s complement sum of the payload split
into 16 bits segments. Since computing this in the switch
would result in repetitive and unnecessary computations, we
precompute the one’s complement sum of the block segment
and cache it together with the segment itself. Using this value
the switch needs only to add the header parts that are different
per client to calculate the checksum.

Figure 7b illustrates the sequence of packets the controller
sends to update the switch. Initially, it sends an UPD message
containing the new hash. This first message tells the switch to
prepare its state for the new block. The next messages are sent
to transmit each of the segments of the block as well as the
precomputed one’s complement sum.

Propagating a newly-learned block The relay node advertises
new blocks to all its connected clients who can then request a
block segment-by-segment. Blocks are transmitted in multiple
individual segments for three reasons: (i) to allow clients to
request lost segments independently; (ii) to avoid loops in
the data plane which would otherwise be necessary as the
block does not fit in one packet; and (iii) to protect against
amplification attacks.

As illustrated in Figure 6b, the controller sends an INV
message which is forwarded by the switch. This INV message
contains the hash of the new block as well as the number of

3Every day, 144 Blocks are mined (on average). For each block at most
one node is whitelisted (the one that is not already whitelisted and advertised
the Block first)
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segments it is composed of. In the example, the relay advertises
hash #5 which is composed of 23 segments. If the Bitcoin
client is unaware of the advertised block, it requests it using
a GET SEG message containing the hash of the block and
each of the 23 segment IDs. In the example, the client first
requests the segment of ID:1 of the block with hash #5 then
the segment of ID:2 and so on. If either the GET SEG or the
SEG is lost the client will simply request the corresponding
segment again. As a protection mechanism, the switch bans
clients that request a block multiple times. To that end, all
requests traverse a heavy-hitter detector, namely SentLimit. For
efficiently implementing this component, one can reuse [49]
which can operate with just 80KB of memory.

VI. NETWORK ARCHITECTURE EVALUATION

In this section, we evaluate SABRE’s efficiency in protect-
ing Bitcoin against routing attacks. Specifically, we answer
the following questions: How effective is SABRE in prevent-
ing routing attacks targeted against the entire network and
individual clients? How does this effectiveness change with
the size and the connectivity of the SABRE network? How
does SABRE stand out against other relay networks and known
counter-measures?

We found that even a small deployment of 6 single-
connected SABRE nodes can prevent 94% of ASes in the
Internet from isolating more than 10% of the Bitcoin clients;
while larger deployments of 30 relays that are 5-connected can
prevent more than 99% of the ASes from isolating more than
20% of Bitcoin clients. In addition, we show that existing relay
networks, like Falcon [3] and FIBRE [2], offer no protection
against routing attacks. Finally, we show that SABRE provides
security level on-par with hosting all clients in /24, an effective
but clearly impractical countermeasure.

We start the section by describing our methodology (Sec-
tion VI-A) before presenting our results in detail.

A. Methodology

Datasets Our evaluation relies on a joint dataset combining
routing and Bitcoin information. Regarding routing informa-
tion, we rely on the AS-level topology and AS-level policies
provided by CAIDA [1], collected in May 2018. We use
the routing tree algorithm [31] to compute the forwarding
path followed between any two ASes. We assume that the
attacker’s advertisements are systematically picked at the tie-
breaking state of the BGP decision process (the worst-case for
SABRE) 4. Regarding Bitcoin information, we use the IPs of
Bitcoin clients from [8] along with the IPs of existing relay
nodes from [2], [3], both collected in May 2018. We merge
the two datasets by associating each Bitcoin IP to the AS
advertising the most-specific IP prefix covering it (using the
routes collected by RIPE BGP collectors [4]).

B. SABRE security efficiency

SABRE protects against network-wide partitions To eval-
uate how effective SABRE is against adversaries that wish to

4Results for the opposite case, where tie-breaking systematically picks paths
originated by relay ASes, can be found in Appendix B
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Fig. 8: Less than 2.5% of ASes are able to disconnect more
than 15% of clients (N : the number of deployed relays; k:
relay-graph connectivity; Tie breaks in favor of the attacker).

partition the Bitcoin network, we quantify how likely it is for
a random adversary to be able to disconnect multiple clients
from the relay network. The fraction of clients a particular AS
can disconnect from the relays is the maximum set of Bitcoin
clients she can isolate, as Bitcoin nodes connected to the relay
network cannot be partitioned.

Fig. 8 illustrates how protected the Bitcoin network is
depending on the size N and internal connectivity k of the
SABRE network. The graph shows, for each given fraction y
of Bitcoin nodes, the percentage of ASes that would be able to
independently disconnect it from SABRE. For N = 20, k = 1,
less than 3% of ASes are able to prevent a considerable fraction
of Bitcoin clients (15%) from connecting to the relay network.
In contrast, more than 90% of the clients can be isolated by
any AS in the current network [17].

The mapping between the number of possible attackers
and the partition sizes varies with the size and connectivity of
SABRE. In particular, increasing the number of deployed nodes
decreases the chances that adversaries can divert traffic suc-
cessfully. On the other hand, decreasing the intra-connectivity
requirements (i.e., the value of k) allows our algorithm (Sec-
tion IV) to select from a larger set of relays and thus to form
a more effective SABRE. This creates an interesting trade-off
between how secure the intra-relay connectivity is and how
well the relay nodes cover the existing Bitcoin network. For
example, while a SABRE of 6 relays that are connected in full-
mesh (5-connected graph) is extremely hard to partition, as the
AS-level adversary would need to divert 5 peer-to-peer links, it
enables more AS-level adversaries to disconnect a larger part
of Bitcoin clients from SABRE. For example, 3% of ASes can
potentially create a partition including 22% of Bitcoin nodes.
In contrast, a 1-connected SABRE allows fewer attackers to
perform severe attacks—only 1% of ASes could create a 12%
partition—but the relay network itself can be partitioned by a
single link failure or a successful hijack from a direct peer.

SABRE protects most individual clients To evaluate how
effectively SABRE protects individual clients, we look at how
likely it is for Bitcoin clients to be prevented by a random
AS-level adversary from reaching all relay nodes.
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Fig. 9: 85% of the clients are protected against 96% of possible
attackers (Tie breaks in favor of the attacker)

Fig. 10 shows, for each given percentage of ASes in the
Internet, the percentage of Bitcoin clients could be attacked
and disconnected from SABRE by this percentage of ASes.
We see that 80% of the clients are protected from 96% of the
AS-level adversaries even with a SABRE network of only 6
nodes that are 5-connected. There is again a trade-off between
secure intra-connectivity and the coverage of Bitcoin clients.
For example, a SABRE of 6 1-connected nodes protects 90% of
Bitcoin clients from 92.5% of ASes, while a fully connected 6-
node SABRE protects from only 89.5% of ASes. Interestingly,
increasing connectivity from k = 3 to k = 5 does not decrease
the protected clients significantly while making disconnecting
the relay network almost impossible.

C. SABRE efficiency compared to existing relay networks

We compare SABRE to FIBRE [2] and Falcon [3] with
respect to their effectiveness against routing attacks. We found
that SABRE outperforms both, for three key reasons.

Existing relays are vulnerable to longer-prefix hijacks All
relay nodes of both FIBRE and Falcon are hosted in prefixes
that are shorter than /24. As such, any AS-level adversary
can cut connections among relays as well as from the Bitcoin
clients only by hijacking 6 more-specific prefixes for FIBRE
and 10 for Falcon.

Existing relay networks are poorly connected Even if
these relay networks were hosted in /24 prefixes, our analysis
revealed that their connections could still be diverted by same-
prefix advertisements. In particular, we found that FIBRE
relays would be disconnected by any of 652 ASes, and Falcon
by any of 3 ASes even if /24 prefixes were used.

Existing relays provide bad coverage Even ignoring their
poor relay-to-relay connectivity and again assuming that these
relay networks were hosted in /24 prefixes, their client-to-
relay connections would still have been more vulnerable than
those of SABRE allowing for more network-wide and targeted
attacks. We compare existing relay networks with SABRE with
respect to how well they protect against routing attacks using
the same graphs as in § VI-B. In particular, Fig. 10 shows
the percentage of ASes that are able to independently isolate
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Fig. 10: SABRE is far more secure than deployed relays and
very close to the unemployable alternative countermeasure of
hosting all clients in /24. (Tie breaks in favor of the attacker)

a fraction of the Bitcoin network as a function of this fraction
while Fig. 11 shows the cumulative percentage of clients as
a function of the number of AS-level adversaries that could
disconnect them from all relay nodes. While FIBRE is slightly
better than Falcon, SABRE outperforms both.

D. SABRE efficiency compared to hosting all clients in /24s

We now compare SABRE to the most effective counter-
measure against routing attacks: hosting all Bitcoin clients in
/24 prefixes [17]. While effective, this countermeasure is also
highly impractical as it requires ISP cooperation in addition
to an increase in the size of the routing tables Internet-wide.
We found that SABRE offers comparable level of protection
against network-wide and targeted attacks while being easily
deployable.

The comparison between the two approaches is not
straightforward as SABRE protects the network even if the at-
tacker has already partitioned the Bitcoin Peer-to-Peer network
while the other approach (hosting clients in /24) aims at secur-
ing the Peer-to-Peer network itself. We compare them against
the same metrics we used previously in Section VI-B, namely
offered protection against partition attacks and effectiveness in
protecting individual nodes. In the following we describe how
we calculated those metrics for the all-/24 approach, before
presenting our results.

First, we estimate the size of different partitions and
the number of AS-level adversaries that could achieve those
assuming all clients are hosted in /24 prefixes. In particular,
we find the AS-level adversaries that would be able to isolate
a considerable fraction of Bitcoin clients using same-prefix
advertisements only. To that end, we run a search on the
AS-level topology graph staring from each AS with Bitcoin
clients X and following order of descending path preference
(as described in Section IV-C), namely more economically
preferred paths for X are visited first. All ASes that are
traversed by the search before another AS with Bitcoin clients
are able to isolate X from the Bitcoin network. Indeed, this
calculation gives only a lower bound with respect to the
possible partitions, i.e. hosting all clients in /24 prefixes
might offer less security than what we computed. Finally we
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Fig. 11: Falcon does not protect many clients as it is centralized
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clients in /24 while being deployable (Tie breaks in favor of
the attacker)

compare our findings to SABRE’s. Our results are summarized
in Fig. 10. Indeed, hosting all clients in /24 prefixes would
secure the Bitcoin Network better than SABRE, as partitions
larger than 20% would be possible for only 0.016% of ASes.

Second, in order to calculate how many attackers can
successfully isolate individual Bitcoin clients assuming that
all clients are hosted in /24 prefixes, we looked at the ASes
that are able to divert traffic from each of those clients to all
others in the network. We compare our findings to SABRE’s.
The results are included in Fig. 11. The two approaches show
similar protection levels with SABRE being slightly better at
times. This is because SABRE can place relays in any AS in
the Internet, while the alternative countermeasure is limited to
the actual distribution of Bitcoin clients.

VII. SOFTWARE/HARDWARE CO-DESIGN FEASIBILITY

We validated the feasibility of our co-design by testing
it in practice using regular and modified Bitcoin clients. In
this section, we showcase that: (i) a programmable switch
can seamlessly talk to a Bitcoin client without any software
interaction; and that (ii) the data-plane memory footprint is
low compared to the on-chip memory available in today’s
programmable switches.

Implementation and testbed Both the controller and the
clients are implemented as extensions of the default Bitcoin
client version 0.16. The former containing ∼650 added or
modified lines of C++ code and the latter ∼680 lines. The
switch is implemented in ∼900 lines of P4 code. Our prototype
runs on Mininet [40] and uses the publicly available P4
behavioral model (BMV2) [14] to emulate the switch. Our
testbed (see Fig. 12) is composed of three clients A, B, C
along with a relay node consisting of a switch and a controller.
Nodes B, C (shown in red) are modified and are connected
to SABRE, while node A (shown in green) is an unmodified
Bitcoin client.

Timing We walk through the life of a block that was mined
in the Bitcoin network and sent by the unmodified client A
to B. The latter will advertise the new block to the switch

Controller
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4
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B C

6

t1=4.116747
t2=4.123658
t3=4.137560
t4=11.141835
t5=11.143454
t6=18.365183

Time Description

1 0 Node B gets block from node A

2 69ms Node B sends ADV to switch

3 14ms Node B connects to Controller 

4 7s Controller updates the switch 

5 1.6ms Controller advertises block to C

6 7.22s Node C gets block in segments

UDP

Bitcoin  
protocol

Fig. 12: A block can be successfully transmitted from node A
to node C via the SABRE after it has been validated by the
controller.

which will allow node B to connect directly to the controller
and transmit it. The controller will then update the memory of
the switch and will advertise the block to the connected peers
(e.g., C). Next, node C will request and receive the block
in segments. The main steps of this procedure are listed in
Fig. 12 which describes each step and the time it required
in our prototype implementation. The most time-consuming
operations are updating the switch and transmitting the block,
taking ∼7s each. These high delays are due to the fact that
we relied on a software-based P4 switch. In practice, the only
actual bottleneck in a hardware implementation would be the
uplink of the relay nodes.

Memory requirements We analytically calculated the mem-
ory required for each of the components in the switch taking
into consideration the expected load. Table I summarizes
our results. It contains the name of the component and its
capacity, i.e., the number of elements that can be added
such that the false positive rate listed in the third column is
not exceeded. We found that the cumulative memory needed
does not exceed 5MB which is well within the limitations of
today’s programmable switches. The most memory-demanding
component is the Blacklist for which we budget 1 million
entries. This is necessary to allow for mitigating DDoS attacks.
In contrast, the components devoted to benign operations are
less memory-demanding since the number of legitimate clients
is significantly less. For instance, we only reserve space for
100k clients in the PeerList and 100 for the Whitelist; both
require less than 1MB. Observe that Bloom filters for regular
clients have a lower false positive rate than the Blacklist.
This enables to serve already connected clients even if the
switch is under such an extreme DDoS attack that the Blacklist
is flooded. We do not list the requirement of the SentLimit
component as they are negligible [49]. Finally, the memory
needed for storing the latest block as well as for keeping all
known hashes takes about 1MB each.

VIII. DEPLOYABILITY & INCENTIVES

In this section, we show that SABRE is both practical and
partially deployable. While a full deployment of SABRE can
protect Bitcoin as a whole, partially deploying SABRE is less
expensive and offers gains to early adopters (even individuals).

A. Full deployment

A complete deployment of SABRE requires: (i) hosting
relays in particular ASes; (ii) equipping relay locations with
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Component Items False Positive Memory

BlackList: 1000000 0.001 1.80MB
WhiteList: 100 0.0001 239.75B
HashMem: 518823 0.0001 1.24MB
PeerList: 100000 0.0001 479.25K
blockMem: 1 - 1.0MB

TABLE I: The memory used in the P4 switch is always <5MB

specialized hardware; and (iii) incentivizing a third party to
build and maintain the infrastructure. In the following, we
explain why each of those requirements is practical.

First, we observe that a large number of ASes that can host
SABRE relays are cloud providers, CDNs, IXPs, large ISPs,
or Software-as-a-Service (SaaS) providers. This should come
as no surprise as such ASes are actively trying to establish
as many peering connections as possible to improve their
services. Deploying SABRE nodes in such ASes is practical
as they already sell online services or are research-friendly
(IXPs [33], [32]). Moreover, even if some eligible ASes do
not consent to host SABRE nodes, the effectiveness of SABRE
will not be significantly affected as: (i) SABRE only requires
few nodes to be useful (as little as 6 ASes, see Section VI);
and (ii) there are more than 2000 possible locations for hosting
ASes. In short, no candidate AS is irreplaceable.

Second, we argue that cloud providers could start
renting out hardware-accelerated computing instances with
programmable network data planes. Actually, some cloud
providers already allow clients to rent advanced hardware
resources. For instance, Amazon EC2 offers the possibility
to connect computing instances with field-programmable gate
arrays [6]. That said, a pure software-based implementation of
SABRE would still protect the Bitcoin network from routing
attacks, leaving DDoS protection to the default mechanism
operated by each AS. As described above, such a software-
based implementation could be readily deployed as it only
requires the possibility to host virtual machines in candidate
ASes.

Third, we argue that the possible monetary losses induced
by routing attacks [17] create business incentives for one or
more entities to deploy and maintain relay nodes. We observe
that such incentives are similar to the ones behind existing
relay networks such as FIBRE [2] and Falcon [3].

Observe also that deploying SABRE does not need to be
approved by the community as a whole. Indeed, a regular
client can connect to a SABRE node via a single lightweight
UDP connections by independently upgrading its code. Thus,
the notoriously slow-moving Bitcoin community cannot be an
obstacle to SABRE’s deployment.

B. Partial deployment

While feasible, fully deploying SABRE is time-consuming
and requires multiple parties to collaborate and possibly share
costs. Luckily, SABRE can also be partially deployed, e.g.
by a mining pool who wishes to protect itself from routing
attacks or by existing relay networks that wish to improve
their poor VI-C protection against routing attacks.

By deploying SABRE at a low-budget, a single mining pool
can secure the propagation of its own blocks and the reception
of new mined ones, even while the Bitcoin peer-peer-network
is under a severe routing attack. As an illustration, such a
deployment of 6 SABRE nodes would only cost 500$/month
(considering the current AWS pricing policy [11]). This cost is:
(i) well within the financial capabilities of a single mining pool;
(ii) entirely justified given the possible losses that a pool could
incur upon a successful routing attack (e.g. an orphan block is
a 150K loss [13]). Note that the above deployment does not
require special hardware to scale as the pool is only interested
in serving its own Bitcoin clients (i.e. its gateways) rather than
any possible Bitcoin client that might wish to benefit from the
system.

Of course, as multiple pools start to build SABRE net-
works, they can collaborate and share costs, henceforth incen-
tivizing the deployment of larger SABRE networks (possibly
using hardware-accelerated instances which are also already
sold by cloud providers [13]) that could protect more clients.

At the same time, existing relay networks such as FIBRE
and Falcon can also have significant gains by partially deploy-
ing SABRE as its relay location algorithm is orthogonal to their
approaches. To do so, existing relays need to independently
relocate their servers accordingly to SABRE’s network design.

IX. DISCUSSIONS

In this section we discuss high-level concerns often raised
against SABRE, focusing on its potential impact on the Bitcoin
ecosystem and its applicability to other Blockchain systems.

Isn’t SABRE violating Bitcoin decentralization premises?
No, for three main reasons. First, it acts alongside Bitcoin peer-
to-peer network and does not intend to replace it. Instead,
SABRE enhances the connectivity of the Bitcoin network,
henceforth reducing its attack surface. Second, SABRE does
not need to be centralized: multiple SABRE-like systems can
easily co-exist, each belonging to a different entity. Third,
SABRE has the potential to allow less well-connected miners
to get their fair-share out of the block-rewards making it less
likely for others to engineer block races.

We observe that existing relays such as FIBRE [2] and
Falcon [3] are small and controlled by a single entity. Yet,
these characteristics did not prevent them from having positive
impact on Bitcoin by decreasing the orphan rate.

Why focusing on Bitcoin? We focus on Bitcoin as opposed
to other cryptocurrencies (e.g., Ripple [16], Ethereum [12])
for three main reasons. First, the Bitcoin network is ex-
tensively studied [43], [23], [45] and the effectiveness of
routing attacks against it is well-understood [17]. In contrast,
more sophisticated Blockchain systems (e.g., Bitcoin-NG [25],
Ouroboros [37], OmniLedger [39], Algorand [28]) are not yet
deployed at large scale. Thus, their exact routing characteristics
are unknown. Second, Bitcoin remains the most widely used
cryptocurrency making its security vital for more users.

Can SABRE protect other blockchains? Yes. Although
SABRE focuses on Bitcoin, its network and node design
principles are general and apply to other blockchain systems.
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SABRE network design can help blockchain systems mit-
igating partition attacks [17]. Partition attacks are a threat to
any blockchain systems depending on Internet connectivity,
including permissioned and/or encrypted ones. SABRE allows
nodes to exchange information even if a malicious AS-level
adversary hijacks and drops traffic among them. In fact, the
properties upon which the SABRE network is built can also be
used by miners to interconnect and/or host their mining power,
or by new blockchains to place their nodes. Note that SABRE
network design would also be useful to advanced blockchain
systems such as ByzCoin [38] and OmniLedger [39] which
currently mitigate the effects of partition attacks by freezing
commits. SABRE would allow them to retain liveness instead
of waiting for the attack to be resolved.

In contrast to its network design, SABRE node’s design
is more Bitcoin-specific. For example, blockchains whose
traffic is encrypted cannot be served from a programmable
network device. Even so, SABRE’s node design exhibits two
key properties that most blockchain systems can leverage.
First, blockchain systems tend to be communication-heavy
(due to the need to reach consensus) meaning that the use
of programmable switches can increase the throughput by
offloading communication burden to the hardware. Second,
most popular items are predictable, as most requests target the
latest mined content, making SABRE-like caching strategies
very effective.

X. RELATED WORK

Using P4 switches as cache Previous works have used
programmable network devices to cache values including
Netcache [35] and NetChain [34]. Netcache uses Tofino
switches [7] as a cache for key-value stores, to deal
with skewed requests in memcached applications. Similarly,
NetChain [34] caches key-values stores in switches to boost
Paxos consensus protocols used in data centers to coordinate
servers. In SABRE, we also rely on switches to cache infor-
mation (here, blocks) but also to distinguish maliscious clients
and to filter incomming information.

BGP security Many proposals have been proposed over the
years to reduce or prevent routing attacks. We distinguish
two approaches: origin validation and path validation. Origin
validation [41] relies on RPKI [20], a X.509-based hierarchy
mapping IP prefixes to ASes, to enable the routers to fil-
ter BGP advertisements originated from unauthorized ASes.
Path validation [42] secures BGP by adding cryptographic
signatures to the BGP messages. It allows the recipient of
an announcement to cryptographically validate that: (i) the
origin AS was authorized to announce the IP prefix; and
(ii) that the list of ASes through which the announcement
passed were indeed those which each of the intermediate AS
intended. Unfortunately, none of these proposals have been
widely deployed, leaving the Internet still vulnerable to routing
attacks [29]. In contrast, SABRE enables to secure Bitcoin
against routing attacks today, without requiring all ASes to
agree or change their practices .

Routing attacks on ToR Extensive work has been done
on routing attacks on ToR [52] and how these can be cir-
cumvented [50], [46] [51]. There are three key differences

between the ToR relay network and the Bitcoin network that
change the spectrum of possible attacks and countermeasures.
First, in order to protect the Bitcoin system we need to keep
the network connected as opposed to preserving the privacy
of every single connection for ToR. As such, we can use
redundancy to protect Bitcoin clients, by connecting them to
multiple SABRE relays such that there is no AS that can
effectively hijack all connections. Second, counter-measures
against routing attacks on ToR are limited to avoiding routes
that might be affected by BGP hijacks, while SABRE is built
to avoid the chance of an attacker to be able to divert it
in the first place. This is possible because Bitcoin clients
have no preference with respect to who to connect to as they
can get the same information from almost any peer. Third,
countermeasures against routing attacks on ToR do not deal
with the case that the client itself is hijacked.

Multicast protocols Mbone [24], was designed to multicast
live videos and music streams in the Internet, where many
routers do not support IP multicast. Using tunnelling, Mbone
traffic can stay under the radar of those routers. Despite
its novelty and usefulness, this network does not take into
consideration whether the used paths can be hijacked and does
not deal with maliciously increased load. Finally, systems such
Splitstream [21] that aim to reduce the load per node, require
a fixed set of participants and a certain structure among them
which would limit the openness of our network (regular clients
cannot easily come and go).

XI. CONCLUSION

We presented SABRE, a relay network aimed at securing
Bitcoin against routing attacks. The key insight behind SABRE
is to position the relay nodes in secured locations, preventing
AS-level attackers from diverting intra-relay communications
and reducing their ability to divert traffic destined to the relay
clients. To protect the nodes themselves, SABRE leverages a
hardware/software co-design (leveraging programmable data
planes) to perform most of the relay operations in hardware.
We fully implemented SABRE and demonstrated its effective-
ness in protecting Bitcoin, with as little as 6 relay nodes.
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APPENDIX

A. Algorithms

Below we include the pseudocode of the two main algo-
rithms described in the paper in Section IV-B and Section IV-C
respectively.

Algorithm 1 Find a set of ASes to locate relays.
1: function LOCATERELAYS(R,R scens,N, k) . finds N k-connected relay

ASes
. R scens : scenarios that each candidate relay AS in R protects against

2: R′ ← {} . ASes to host relay nodes
3: R′ scens ← {} . scenarios relays in R′ protect against
4: while R′.length < N do
5: Rs ← {r : r ∈ R \ R′ s.t.G[R′ ∪ r] is k-connected} . candidate

relays
6: R′.add( FINDNEXT (Rs,R scens,R′ scens) )
7: end while
8: return R′

9: end function
10: function FINDNEXT(Rs,R scens,R′ scens) . finds best relay to add to

R′

11: best r ← None; best scens ← {};
12: for r in Rs do
13: tmp scens ← R′ scens ∪ R scens[r]
14: if best scens.effect < tmp scens.effect then
15: best scens ← tmp scens
16: best r ← r
17: end if
18: end for
19: R′ scens.add(R scens[best r])
20: return best r
21: end function

Algorithm 2 Compare two paths based on preference.
1: function MOREPREFERRED(pathA, pathB) . returns 0 if pathA is more

preferred and 1 otherwise
2: while pathA & pathB & hopA.pick==hopB.pick do
3: hopA ← pathA.pop()
4: hopB ← pathB.pop()
5: end while . Traverse until the two paths
6: if hopA.type 6= hopB.type then
7: switch (hopA.type , hopB.type) do
8: case (customer, peer)
9: return 0

10: case (customer, provider)
11: return 0
12: case (peer, provider)
13: return 0
14: case (peer, customer)
15: return 1
16: case (provider, customer)
17: return 0
18: case (provider, peer)
19: return 1
20: else
21: if len(pathA) = len(pathB) then
22: return 1 . In case of a tie, we prefer path B.
23: else
24: return argmin(len(pathA), len(pathB))
25: end if
26: end if
27: end function

B. Results with ties against the attacker

Although SABRE significantly improves the security of
Bitcoin against routing attacks the exact partition sizes and
number of vulnerable clients depend on the tie-breaking
decisions, namely which path is chosen in cases that the
competing routes are equivalent economically and length-wise.
In Section VII, we assumed that the tie always breaks for
the attacker. In the following, we include the same analysis
only now assuming that the tie-breaking favors the legitimate
destination.
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Fig. 13: When tie breaks in favor of the legitimate destinations:
a SABRE of only 6 relays that are fully connected prevents all
attackers from isolating more than 16%.
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Fig. 14: When tie breaks in favor of the legitimate destinations:
a SABRE of 10 5-connected relays protects 95% of the clients
from 99.5% of the AS level adversaries.
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Fig. 15: When tie breaks in favor of the legitimate destinations:
the largest possible partition by any attacker is 14% for a
SABRE of 6 relays that is 5-connected.
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Fig. 16: When tie breaks in favor of the legitimate destinations:
a SABRE of 20 relays that are 1-connected can secure 100%
of the clients against more than 98% attackers.
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