Novel Applications for a SDN-enabled Internet eXchange Point

Joint work with: Arpit Gupta, Muhammad Shahbaz, Sean P. Donovan, Russ Clark, Brandon Schlinker, E. Katz-Bassett, Nick Feamster, Jennifer Rexford and Scott Shenker

Laurent Vanbever
Princeton University

SDX Workshop, Washington DC
June, 5 2014
SDX = SDN + IXP
SDX = SDN + IXP

Augment the IXP data-plane with SDN capabilities
keeping default forwarding and routing behavior

Enable fine-grained inter domain policies
bringing new features while simplifying operations
SDX = SDN + IXP

Augment the IXP data-plane with SDN capabilities keeping default forwarding and routing behavior

Enable fine-grained inter domain policies bringing new features while simplifying operations

... with scalability and correctness in mind supporting the load of a large IXP and resolving conflicts
SDX is a platform that enables multiple stakeholders to define policies/apps over a shared infrastructure.
SDX enables a wide range of novel applications

<table>
<thead>
<tr>
<th>Category</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>security</td>
<td>Prevent/block policy violation</td>
</tr>
<tr>
<td></td>
<td>Prevent participants communication</td>
</tr>
<tr>
<td></td>
<td>Upstream blocking of DoS attacks</td>
</tr>
<tr>
<td>forwarding optimization</td>
<td>Middlebox traffic steering</td>
</tr>
<tr>
<td></td>
<td>Traffic offloading</td>
</tr>
<tr>
<td></td>
<td>Inbound Traffic Engineering</td>
</tr>
<tr>
<td></td>
<td>Fast convergence</td>
</tr>
<tr>
<td>peering</td>
<td>Application-specific peering</td>
</tr>
<tr>
<td>remote-control</td>
<td>Influence BGP path selection</td>
</tr>
<tr>
<td></td>
<td>Wide-area load balancing</td>
</tr>
</tbody>
</table>
Novel Applications for a SDN-enabled Internet eXchange Point

1. Architecture
 - programming model

2. Scalability
 - control- & data-plane

3. Applications
 - inter domain bonanza
Novel Applications for a SDN-enabled Internet eXchange Point

1. Architecture
 programming model

Scalability
control- & data-plane

Applications
inter domain bonanza
An IXP is a large layer-2 domain

Participant #1

Edge router

Participant #2

IXP Switching Fabric

Participant #3
An IXP is a large layer-2 domain where participant routers exchange routes using BGP.
To alleviate the need of establishing eBGP sessions, IXP often provides a Route Server (route multiplexer).
IP traffic is exchanged directly between participants—IXP is forwarding transparent.
With respect to a traditional IXP, SDX…
With respect to a traditional IXP, SDX’s data-plane relies on SDN-capable devices.
With respect to a traditional IXP, SDX’s control-plane relies on a SDN controller.
SDX participants express their forwarding policies in a high-level language built on top of Pyretic (*)

(*) http://frenetic-lang.org/pyretic/
SDX policies are composed of a *pattern* and some *actions*

match (Pattern), then (Actions)
Pattern selects packets based on any header fields

Pattern

match (eth_type, vlan_id, srcmac, dstmac, protocol, dstip, tos, srcip, srcport, dstport), then (Actions)
Pattern selects packets based on any header fields, while actions forward or modify the selected packets.

\[
\text{match (Pattern), then (drop, forward, rewrite)}
\]
Each participant writes policies independently and transmits them to the controller.

Participant #2 policy

\[
\text{match}(\text{dstport}=80), \text{fwd}(\text{#3}) \\
\text{match}(\text{dstport}=22), \text{fwd}(\text{#1})
\]

Participant #3 policy

\[
\text{match}(\text{srcip}=0*), \text{fwd}(\text{left}) \\
\text{match}(\text{srcip}=1*), \text{fwd}(\text{right})
\]
Given the participant policies, the controller compiles them to SDN forwarding rules.

Participant #2 policy:
- `match(dstport=80), fwd(#3)`
- `match(dstport=22), fwd(#1)`

Participant #3 policy:
- `match(srcip=0*), fwd(left)`
- `match(srcip=1*), fwd(right)`
Given the participant policies, the controller compiles them to SDN forwarding rules

Ensuring isolation

Resolving policies conflict

Ensuring compatibility with BGP
Given the participant policies, the controller compiles them to SDN forwarding rules:

- Ensuring isolation
- Resolving policies conflict
- Ensuring compatibility with BGP

Each participant controls one virtual switch connected to participants it can communicate with.
Given the participant policies, the controller compiles them to SDN forwarding rules.

Ensuring isolation

Resolving policies conflict

Ensuring compatibility with BGP

Participant policies are sequentially composed in an order that respects business relationships.
Given the participant policies, the controller compiles them to SDN forwarding rules.

Ensuring isolation

Resolving policies conflict

Ensuring compatibility with BGP

Policies are augmented with BGP information, guaranteed correctness and reachability.
Listening to BGP is important to avoid correctness issues.

Participant #2 policy:
- match(dstport=80), fwd(#3)
- match(dstport=22), fwd(#1)

Participant #1 policy:
- match(srcip=0*), fwd(left)
- match(srcip=1*), fwd(right)

SDN controller

#1 reachable prefixes: 11/24
#3 reachable prefixes: 10/24
Traffic for 11/24, port 80 must be delivered to participant #1, not #3, to avoid blackhole

Participant #2 policy

match(dstport=80), fwd(#3)
mach(dstport=22), fwd(#1)

Participant #1

match(srcip=0*), fwd(left)
mach(srcip=1*), fwd(right)

#3 reachable prefixes: 10/24

#1 reachable prefixes: 11/24
Novel Applications for a
SDN-enabled Internet eXchange Point

Architecture
programming model

Scalability
control- & data-plane

Applications
inter domain bonanza
The SDX platform faces scalability challenges in both the data- and in the control-plane.
500,000 prefixes, 500+ participants, potentially billions of forwarding rules

100s of policies that have to be updated dynamically according to BGP
To scale, the SDX platform leverages *domain-specific knowledge*

- **data-plane**
 - *space*
 - leverage *existing routing platform*

- **control-plane**
 - *time*
 - leverage *inherent policy structure*
leverage existing routing platform
The edge routers, sitting next to the fabric, are tailored to match on numerous IP prefixes.
We consider routers FIB as the first stage of a multi-stage FIB.
Routers FIB match on the destination prefix and set a tag accordingly.
The SDN FIB matches on the tag, not on the IP prefixes

Table #1

set a TAG based on IP

Table #2

match TAG

Edge router

SDN switch
How do we provision tag entries in a router, and what are these tags?

- Set a TAG based on IP
- Match TAG

Table #1

Table #2

Edge router

SDN switch
We use BGP as a provisioning interface and BGP next-hops as labels.
All prefixes sharing the same forwarding behavior are grouped together using the same BGP next-hop.
The SDX data-plane maintains one forwarding entry per prefix-group.
Data-plane utilization is reduced considerably as there are \textit{way} more prefixes than prefixes groups.

\# prefixes >> \#prefixes groups
By leveraging BGP, the SDX can accommodate policies for hundreds of participants with less than 30k rules.
leverage inherent policy structure
SDX policies exacerbate key characteristics that enable to speed-up compilation time considerably.

- Policies are often disjoint
- Policy updates are local
- Policy updates are bursty
SDX policies exacerbate key characteristics that enable to speed-up compilation time considerably.

Policies are often disjoint.

Policy updates are local.

Disjoint policy do not have to be composed together.

Significant gain as composing policies is time consuming.

Policy updates are bursty.
SDX policies exacerbate key characteristics that enable to speed-up compilation time considerably.

- Policies are often disjoint
- Policy updates are local
- Policy updates are bursty

Policy updates usually impact a few prefix-groups

75% of the updates affect no more than 3 prefixes
SDX policies exacerbate key characteristics that enable to speed-up compilation time considerably.

- Policies are often disjoint
- Policy updates are local
- Policy updates are bursty

Policy changes are separated of large period of inactivity

75% of the time, inter-arrival time between updates is at least 10s
The SDX controller adopts a two-staged compilation algorithm

- Fast, but non-optimal algorithm upon updates
 - can create more rules than required
- Slow, but optimal algorithm in background
 - recompute prefix groups
- Time vs Space trade-off
In most cases, the SDX takes <100 ms to recompute the global policy upon a BGP event.
Novel Applications for a SDN-enabled Internet eXchange Point

Architecture
programming model

Scalability
control- & data-plane

Applications
inter domain bonanza
SDX enables a wide range of novel applications

<table>
<thead>
<tr>
<th>Category</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>security</td>
<td>Prevent/block policy violation</td>
</tr>
<tr>
<td></td>
<td>Prevent participants communication</td>
</tr>
<tr>
<td></td>
<td>Upstream blocking of DoS attacks</td>
</tr>
<tr>
<td>forwarding optimization</td>
<td>Middlebox traffic steering</td>
</tr>
<tr>
<td></td>
<td>Traffic offloading</td>
</tr>
<tr>
<td></td>
<td>Inbound Traffic Engineering</td>
</tr>
<tr>
<td></td>
<td>Fast convergence</td>
</tr>
<tr>
<td>peering</td>
<td>Application-specific peering</td>
</tr>
<tr>
<td>remote-control</td>
<td>Influence BGP path selection</td>
</tr>
<tr>
<td></td>
<td>Wide-area load balancing</td>
</tr>
</tbody>
</table>
SDX enables a wide range of novel applications

security	Prevent/block policy violation
	Prevent participants communication
	Upstream blocking of DoS attacks

forwarding optimization	Middlebox traffic steering
	Traffic offloading
	Inbound Traffic Engineering
	Fast convergence

| peering | Application-specific peering |

| remote-control | Influence BGP path selection |
| | Wide-area load balancing |
SDX can improve inbound traffic engineering
Given an IXP Physical Topology and a BGP topology,
Given an IXP Physical Topology and a BGP topology, implement B’s inbound policies.

B’s inbound policies

<table>
<thead>
<tr>
<th>to</th>
<th>from</th>
<th>receive on</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.0.1/24</td>
<td>A</td>
<td>left</td>
</tr>
<tr>
<td>192.0.2/24</td>
<td>C</td>
<td>right</td>
</tr>
<tr>
<td>192.0.2/24</td>
<td>ATT_IP</td>
<td>right</td>
</tr>
<tr>
<td>192.0.1/24</td>
<td>*</td>
<td>right</td>
</tr>
<tr>
<td>192.0.2/24</td>
<td>*</td>
<td>left</td>
</tr>
</tbody>
</table>
How do you do that with BGP?

B’s inbound policies

<table>
<thead>
<tr>
<th>to</th>
<th>from</th>
<th>receive on</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.0.1/24</td>
<td>A</td>
<td>left</td>
</tr>
<tr>
<td>192.0.2/24</td>
<td>C</td>
<td>right</td>
</tr>
<tr>
<td>192.0.2/24</td>
<td>ATT_IP</td>
<td>right</td>
</tr>
<tr>
<td>192.0.1/24</td>
<td>*</td>
<td>right</td>
</tr>
<tr>
<td>192.0.2/24</td>
<td>*</td>
<td>left</td>
</tr>
</tbody>
</table>
It is hard
BGP provides few knobs to influence remote decisions

Implementing such a policy is configuration-intensive using AS-Path prepend, MED, community tagging, etc.
BGP policies **cannot** influence remote decisions based on source addresses

to

| 192.0.2.0/24 | ATT_IP | right |

receive on
In any case, the outcome is **unpredictable**

Implementing such a policy is configuration-intensive using AS-Path prepend, MED, community tagging, etc.

There is *no guarantee* that remote parties will comply one can only “influence” remote decisions

Networks engineers have no choice but to “try and see” which makes it impossible to adapt to traffic pattern
With SDX, implement B’s inbound policy is easy

SDX policies give any participant direct control on its forwarding paths

<table>
<thead>
<tr>
<th>to</th>
<th>from</th>
<th>fwd</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.0.1/24</td>
<td>A</td>
<td>left</td>
</tr>
<tr>
<td>192.0.2/24</td>
<td>B</td>
<td>right</td>
</tr>
<tr>
<td>192.0.2/24</td>
<td>ATT_IP</td>
<td>right</td>
</tr>
<tr>
<td>192.0.1/24</td>
<td>*</td>
<td>right</td>
</tr>
<tr>
<td>192.0.2/24</td>
<td>*</td>
<td>left</td>
</tr>
</tbody>
</table>

B’s SDX Policy

- `match(dstip=192.0.1/24, srcmac=A), fwd(L)`
- `match(dstip=192.0.2/24, srcmac=B), fwd(R)`
- `match(dstip=192.0.2/24, srcip=ATT), fwd(R)`
- `match(dstip=192.0.1/24), fwd(R)`
- `match(dstip=192.0.2/24), fwd(L)`
SDX enables a wide range of novel applications

<table>
<thead>
<tr>
<th>Category</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>security</td>
<td>Prevent/block policy violation</td>
</tr>
<tr>
<td></td>
<td>Prevent participants communication</td>
</tr>
<tr>
<td></td>
<td>Upstream blocking of DoS attacks</td>
</tr>
<tr>
<td>forwarding optimization</td>
<td>Middlebox traffic steering</td>
</tr>
<tr>
<td></td>
<td>Traffic offloading</td>
</tr>
<tr>
<td></td>
<td>Inbound Traffic Engineering</td>
</tr>
<tr>
<td></td>
<td>Fast convergence</td>
</tr>
<tr>
<td>peering</td>
<td>Application-specific peering</td>
</tr>
<tr>
<td>remote-control</td>
<td>Influence BGP path selection</td>
</tr>
<tr>
<td></td>
<td>Wide-area load balancing</td>
</tr>
</tbody>
</table>
SDX enables a wide range of novel applications

- **security**
 - Prevent/block policy violation
 - Prevent participants communication
 - **Upstream blocking of DoS attacks**

- **forwarding optimization**
 - Middlebox traffic steering
 - Traffic offloading
 - Inbound Traffic Engineering
 - Fast convergence

- **peering**
 - Application-specific peering

- **remote-control**
 - Influence BGP path selection
 - Wide-area load balancing
SDX can help in blocking DDoS attacks closer to the source
AS7 is victim of a DDoS attack originated from AS13
AS7 can remotely install \textit{drop()} rule in the SDX platforms
match(srcip=Attacker/24, dstip=Victim/32) >> drop()
Novel Applications for a SDN-enabled Internet eXchange Point

Architecture
programming model

Scalability
control- & data-plane

Applications
inter domain bonanza
What’s next?
Internet ♥ SDX

Building a SDX-mediated Internet
SDX currently considers a single deployment
Step 1: interconnecting SDX platforms
Step 2: completely replacing BGP with a SDX-mediated Internet
“Let’s take over the world”
How can our platform benefit future efforts?
Our SDX platform can serve as skeleton for a SDX ecosystem

We have running code (*)
with full BGP integration, check out our tutorial

We are in the process of having a first deployment
SNAP @ ColoATL, planned deployment with GENI

Many interested parties already
important potential for impact

(*) https://github.com/sdn-ixp/sdx-platform
Novel Applications for a SDN-enabled Internet eXchange Point

Laurent Vanbever
www.vanbever.eu

SDX Workshop, Washington DC
June, 5 2014