Novel Applications for a SDN-enabled Internet Exchange Point

Laurent Vanbever
vanbever@cs.princeton.edu

RIPE 67, Athens
October, 14 2013

Joint work with
Arpit Gupta, Muhammad Shahbaz, Hyojoon Kim,
Russ Clark, Nick Feamster, Jennifer Rexford and Scott Shenker
BGP is notoriously unflexible and difficult to manage
BGP is notoriously unflexible and difficult to manage

Fwd paradigm

Fwd control

Fwd influence
BGP is notoriously unflexible and difficult to manage.

- **Fwd paradigm**: destination-based
- **Fwd control**: indirect
 - *protocol configuration*
- **Fwd influence**: local
 - *at the BGP session level*
SDN can enable fine-grained, flexible and direct expression of interdomain policies

<table>
<thead>
<tr>
<th></th>
<th>BGP</th>
<th>SDN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fwd paradigm</td>
<td>destination-based</td>
<td>any</td>
</tr>
<tr>
<td>Fwd control</td>
<td>indirect</td>
<td>direct</td>
</tr>
<tr>
<td></td>
<td>protocol configuration</td>
<td>via an open API (e.g., OpenFlow)</td>
</tr>
<tr>
<td>Fwd influence</td>
<td>local</td>
<td>global</td>
</tr>
<tr>
<td></td>
<td>at the BGP session level</td>
<td>via remote controller control</td>
</tr>
</tbody>
</table>
Internet Exchange Points are perfect places to deploy new interdomain features
Internet Exchange Points are perfect places to deploy new interdomain features

- connect a large number of participants
Internet Exchange Points are perfect places to deploy new interdomain features

Internet Exchange Points (IXPs)

- connect a large number of participants
 > 600 participants

AMS-IX (*):

(*) See https://www.ams-ix.net
Internet Exchange Points are perfect places to deploy new interdomain features.

- Internet Exchange Points (IXPs) | AMS-IX (*):
 - connect a large number of participants | > 600 participants
 - carry a large amount of traffic | > 2400 Gb/s (peak)

(*) See https://www.ams-ix.net
Internet Exchange Points are perfect places to deploy new interdomain features

Internet Exchange Points (IXPs) AMS-IX (*):

- connect a large number of participants > 600 participants
- carry a large amount of traffic > 2400 Gb/s (peak)
- are a hotbed of innovation BGP Route Server

Mobile peering
Open peering
...

(*) See https://www.ams-ix.net
Internet Exchange Points are perfect places to deploy new interdomain features

Internet Exchange Points (IXPs)

- connect a large number of participants
- carry a large amount of traffic
- are a hotbed of innovation

Even a single deployment can have a large impact!
SDX = SDN + IXP

Augment IXP with SDN capabilities
default forwarding and routing behavior is unchanged

Enable fine-grained interdomain policies
simplifying network operations

... with scalability in mind
support the load of a large IXP
What does SDX enable that was **hard** or **impossible** to do before?
SDX enables a wide range of novel applications

| Security | Prevent/block policy violation
<table>
<thead>
<tr>
<th></th>
<th>Prevent participants communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forwarding optimization</td>
<td>Middlebox traffic steering</td>
</tr>
<tr>
<td></td>
<td>Traffic offloading</td>
</tr>
<tr>
<td></td>
<td>Inbound Traffic Engineering</td>
</tr>
<tr>
<td></td>
<td>Fast convergence</td>
</tr>
<tr>
<td>Peering</td>
<td>Application-specific peering</td>
</tr>
<tr>
<td>Remote-control</td>
<td>Upstream blocking of DoS attacks</td>
</tr>
<tr>
<td></td>
<td>Influence BGP path selection</td>
</tr>
<tr>
<td></td>
<td>Wide-area load balancing</td>
</tr>
</tbody>
</table>
Novel Applications for a SDN-enabled Internet Exchange Point

1. SDX Architecture
data- and control-plane

2. App#1: Inbound TE
easy and deterministic

3. App#2: Fast convergence
<1s after peering link failure
Novel Applications for a SDN-enabled Internet Exchange Point

1 SDX Architecture
data- and control-plane

App#1: Inbound TE
easy and deterministic

App#2: Fast convergence
<1s after peering link failure
An IXP is a large L2 domain where participant routers peer using BGP
An IXP is a large L2 domain where participant routers peer using BGP.
An IXP is a large L2 domain where participant routers peer using BGP
An IXP is a large L2 domain where participant routers peer using BGP
An IXP is a large L2 domain where participant routers peer using BGP
With respect to IXPs, SDN-enabled IXPs (SDX) ...
With respect to IXPs, SDN-enabled IXPs (SDX) data plane relies on SDN-capable devices.
With respect to IXPs, SDN-enabled IXPs (SDX) control plane relies on a SDN controller.
SDX participants write their inter domain policies using a high-level language built on top of Pyretic (*)

(*) See http://frenetic-lang.org/pyretic/
SDX policies are composed of a *pattern* and some *actions*

\[
\text{match (Pattern), then (Actions)}
\]

(*) See http://frenetic-lang.org/pyretic/
Pattern selects packets based on any header fields, while Actions forward or modify the selected packets.

Pattern

match (eth_type, vlan_id, srcmac, dstmac, protocol, dstip, srcip, srcport, dstport), &&, ||

Action

then (drop, forward, rewrite)

(*) See http://frenetic-lang.org/pyretic/
Each SDX participant writes her policies independently

Participant B’s policy:
- match(dstip=ipC), fwd(C)
- match(dstip=ipA), fwd(A)
- match(dstip=ipB), fwd(B)

Participant A’s policy:
- match(dstip=ipA.1), fwd(A1)
- match(dstip=ipA.2), fwd(A2)

Participant C’s policy:
- match(dstip=ipC), fwd(C)
The SDX controller composes these policies together ensuring *isolation* and *correctness*.

Participant B’s policy:
- `match(dstip=ipC), fwd(C)`
- `match(dstip=ipA), fwd(A)`
- `match(dstip=ipB), fwd(B)`

Participant A’s policy:
- `match(dstip=ipA.1), fwd(A1)`
- `match(dstip=ipA.2), fwd(A2)`

Participant C’s policy:
- `match(dstip=ipC), fwd(C)`
After compiling the policies, the SDX controller provisions the IXP data plane using OpenFlow
Building a SDX platform is challenging, but possible
Challenge #1: Isolation

How do we? Check that it is legitimate for remote participants to provision a policy P?
Challenge #1: Isolation

How do we? Check that it is legitimate for remote participants to provision a policy P?

We... Use the RPKI system to authenticate policies scope only the prefix owner can act on the traffic remotely.
Challenge #2: Access control

How do we? Prevent participants from performing unwanted actions (e.g., rewrite the source mac)?
Challenge #2: Access control

How do we? Prevent participants from performing unwanted actions (e.g., rewrite the source mac)?

We... Use access-lists to limit the actions available to each participant
Challenge #3: Isolation

How do we? Avoid clashes between participant policies acting on the same traffic?
Challenge #3: Isolation

How do we? Avoid clashes between participant policies acting on the same traffic?

We... Use virtual topologies to limit participants’ visibility each participant can only talk with its own neighbors
Challenge #4: Scalability

How do we? Manage millions of forwarding entries with hardware supporting only hundred thousands of them?
Challenge #4: Scalability

How do we? Manage millions of forwarding entries with hardware supporting only hundred thousands of them?

We... Leverage routers’ routing tables tailored for IP prefixes matching
Novel Applications for a SDN-enabled Internet Exchange Point

SDX Architecture
data- and control-plane

2 App#1: Inbound TE
easy and deterministic

App#2: Fast convergence
<1s after peering link failure
SDX can improve inbound traffic engineering
Given an IXP Physical Topology and a BGP topology,
Given an IXP Physical Topology and a BGP topology, Implement B’s inbound policies

B’s inbound policies

<table>
<thead>
<tr>
<th>to</th>
<th>from</th>
<th>receive on</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.0.1/24</td>
<td>A</td>
<td>left</td>
</tr>
<tr>
<td>192.0.2/24</td>
<td>C</td>
<td>right</td>
</tr>
<tr>
<td>192.0.2/24</td>
<td>ATT_IP</td>
<td>right</td>
</tr>
<tr>
<td>192.0.1/24</td>
<td>*</td>
<td>right</td>
</tr>
<tr>
<td>192.0.2/24</td>
<td>*</td>
<td>left</td>
</tr>
</tbody>
</table>
How do you do that with BGP?

B’s inbound policies

<table>
<thead>
<tr>
<th>to</th>
<th>from</th>
<th>receive on</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.0.1/24</td>
<td>A</td>
<td>left</td>
</tr>
<tr>
<td>192.0.2/24</td>
<td>C</td>
<td>right</td>
</tr>
<tr>
<td>192.0.2/24</td>
<td>ATT_IP</td>
<td>right</td>
</tr>
<tr>
<td>192.0.1/24</td>
<td>*</td>
<td>right</td>
</tr>
<tr>
<td>192.0.2/24</td>
<td>*</td>
<td>left</td>
</tr>
</tbody>
</table>
It is hard

BGP provides few knobs to influence remote decisions

Implementing such a policy is configuration-intensive
using AS-Path prepend, MED, community tagging, etc.
... and even impossible for some requirements

BGP policies cannot influence remote decisions based on source addresses

to from receive on

192.0.2.0/24 ATT_IP right
In any case, the outcome is *unpredictable*

Implementing such a policy is configuration-intensive using AS-Path prepend, MED, community tagging, etc.

There is *no guarantee* that remote parties will comply, one can only “influence” remote decisions.

Networks engineers have no choice but to “try and see” which makes it impossible to adapt to traffic patterns.
With SDX, implement B’s inbound policy is easy

SDX policies give any participant *direct* control on its forwarding paths

<table>
<thead>
<tr>
<th>to</th>
<th>from</th>
<th>fwd</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.0.1/24</td>
<td>A</td>
<td>left</td>
</tr>
<tr>
<td>192.0.2/24</td>
<td>B</td>
<td>right</td>
</tr>
<tr>
<td>192.0.2/24</td>
<td>ATT_IP</td>
<td>right</td>
</tr>
<tr>
<td>192.0.1/24</td>
<td>*</td>
<td>right</td>
</tr>
<tr>
<td>192.0.2/24</td>
<td>*</td>
<td>left</td>
</tr>
</tbody>
</table>

B’s SDX Policy

- `match(dstip=192.0.1/24, srccmac=A), fwd(L)`
- `match(dstip=192.0.2/24, srccmac=B), fwd(R)`
- `match(dstip=192.0.2/24, srcip=ATT), fwd(R)`
- `match(dstip=192.0.1/24), fwd(R)`
- `match(dstip=192.0.2/24), fwd(L)`
Novel Applications for a SDN-enabled Internet Exchange Point

SDX Architecture
data- and control-plane

App#1: Inbound TE
easy and deterministic

App#2: Fast convergence
<1s after peering link failure
BGP is pretty slow to converge upon peering failure
Let’s consider a simple example with 2 networks, A and B, with B being the provider of A.
Router B2 is a backup router, it can be used only upon B1’s failure.
Both A1 and A2 prefer the routes received from B1 and install them in their FIB.

500,000 BGP routes

forwarding table

prefix NH
P1 B1
... ...
P500k B1
Upon B1’s failure, A1 and A2 must update every single entry in their FIB (~500k entries)
Upon B1’s failure, A1 and A2 must update every single entry in their FIB (~500k entries)
Upon B1’s failure, A1 and A2 must update every single entry in their FIB (~500k entries)
On most routers, FIB updates are performed linearly, entry-by-entry, leading to *slow* BGP convergence.

Convergence time: $500k \text{ entries} \times 150 \text{ usecs} / \text{entry}$

Average time to update one entry
On most routers, FIB updates are performed linearly, entry-by-entry, leading to *slow* BGP convergence.

\[
\text{convergence time} = \frac{500k \text{ entries} \times 150 \text{ usecs}}{\text{entry}} = O(75) \text{ seconds}
\]

average time to update one entry
With SDX, sub-second peering convergence can be achieved with any router
When receiving multiple routes, the SDX controller pre-computes a backup NH for each prefix.
When receiving multiple routes, the SDX controller pre-computes a backup NH for each prefix.
Upon a peer failure, the SDX controller directly pushes next-hop rewrite rules.
match(srcmac:A1, dstmac:B1), rewrite(dstmac:B2), fwd(B2)
match(srcmac:A2, dstmac:B1), rewrite(dstmac:B2), fwd(B2)
All BGP traffic **immediately** moves from B1 to B2, independently of the number of FIB updates.

![Diagram showing BGP traffic moving from B1 to B2 independently of FIB updates](image-url)
SDX data-plane can enable sub-second, prefix-independent BGP convergence

\[
\text{convergence time} = \# \text{edge entries} \times 150 \text{ usecs} + 30\sim50 \text{ ms} \quad \text{entry}
\]

average update time per entry
SDX data-plane can enable sub-second, prefix-independent BGP convergence

\[
\text{convergence time} = \left(\text{\# edge entries} \times 150 \ \text{usecs} \right) + 30\text{~}50 \ \text{ms} = O(30\text{~}50) \ \text{ms}
\]
SDX data-plane can enable sub-second, prefix-independent BGP convergence

Most peering links can be protected since most participants have at least two interfaces.

It does not interfere with participant policies totally transparent to the routing system.

It does not require any hardware changes works on any router, even older ones.
Novel Applications for a
SDN-enabled Internet Exchange Point

SDX Architecture
data- and control-plane

App#1: Inbound TE
easy and deterministic

App#2: Fast convergence
<1s after peering link failure
SDN can also solve some of the challenges faced by IXP operators

Capture broadcast traffic & unwanted traffic
deal with it at the controller level (e.g., ARP, STP BPDUs)

Enable fine-grained Traffic Engineering, Load-balancing
think traffic steering, monitoring, etc.

Simplify infrastructure management
get rid of STP, perform isolation without VLANs, etc.
We have running code as well as a first deployment site.

We have a first SDX controller prototype which supports policies composition and isolation.

We have partnered with a large regional IXP in Atlanta which hosts many large content providers such as Akamai.

We are open for peering request. Ping me if you are interested.
Participate in our survey
Novel Applications for a SDN-enabled Internet Exchange Point

Laurent Vanbever
http://vanbever.eu

RIPE 67, Athens
October, 14 2013