SDX: A Software Defined Internet Exchange

@SIGCOMM 2014

Laurent Vanbever
Princeton University

FGRE Workshop (Ghent, iMinds)
July, 8 2014
The Internet is a network of networks, referred to as Autonomous Systems (AS)
BGP is the routing protocol “glueing” the Internet together.
ASes exchange information about the IP prefixes they can reach.
ASes exchange information about the IP prefixes they can reach.
Reachability information is propagated hop-by-hop

129.132.0.0/16
ETH/UNIZH Camp Net

Path: 10 40
Reachability information is propagated hop-by-hop

129.132.0.0/16
Path: 50 10 40

AS20

129.132.0.0/16
Path: 10 40

AS10

129.132.0.0/16
Path: 50 10 40

AS50

129.132.0.0/16

AS30

Deutsche Telekom

ETH/UNIZH Camp Net

AS40
Life of a BGP router is made of three consecutive steps

while true:

- receives routes from my neighbors
- select one best route for each prefix
- export the best route to my neighbors
Each AS can apply local routing policies

Each AS is free to

- select and use any path
 preferably, the cheapest one
always prefer Deutsche Telekom routes over AT&T
always prefer Deutsche Telekom routes over AT&T

IP traffic
Each AS can apply local routing policies

Each AS is free to

- select and use any path
 preferably, the cheapest one

- decide which path to export (if any) to which neighbor
 preferably none, to minimize carried traffic
do not export ETH routes to AT&T
do not export ETH routes to AT&T
BGP is notoriously inflexible and difficult to manage
BGP is notoriously inflexible and difficult to manage

Fwd paradigm

Fwd control

Fwd influence
BGP is notoriously inflexible and difficult to manage.

- **BGP**
- **Fwd paradigm** destination-based
- **Fwd control** indirect
- **Fwd influence** local
- **BGP session**
SDN can enable fine-grained, flexible and direct expression of interdomain policies

<table>
<thead>
<tr>
<th>BGP</th>
<th>SDN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fwd paradigm</td>
<td>destination-based</td>
</tr>
<tr>
<td>Fwd control</td>
<td>indirect</td>
</tr>
<tr>
<td>Fwd influence</td>
<td>local</td>
</tr>
<tr>
<td></td>
<td>BGP session</td>
</tr>
</tbody>
</table>
How do you deploy SDN in a network composed of 50,000 subnetworks?
How do you deploy SDN in a network composed of 50,000 subnetworks?

Well, you don’t …
Instead, you aim at finding locations where deploying SDN can have the most impact
Instead, you aim at finding locations where deploying SDN can have the most impact.

Deploy SDN in locations that:

- connect a large number of networks
- carry a large amount of traffic
- are opened to innovation
Internet eXchange Points (IXP) meet all the criteria

- connect a large number of networks
- carry a large amount of traffic
- are opened to innovation

Deploy SDN in locations that

AMS-IX

670 networks
2.9 Tbps (peak)
BGP Route Server
Mobile peering
Open peering...

https://www.ams-ix.net
A single deployment can have a large impact

Deploy SDN in locations that

- connect a large number of networks
- carry a large amount of traffic
- are opened to innovation

AMS-IX

- 670 networks
- 2.9 Tb/s (peak)
- BGP Route Server
- Mobile peering
- Open peering...

https://www.ams-ix.net
SDX = SDN + IXP
\[SDX = SDN + IXP \]

Augment the IXP data-plane with SDN capabilities keeping default forwarding and routing behavior.

Enable fine-grained inter domain policies bringing new features while simplifying operations.
\(SDX = SDN + IXP \)

- **Augment** the IXP data-plane with SDN capabilities
 keeping default forwarding and routing behavior

- **Enable** fine-grained inter domain policies
 bringing new features while simplifying operations

 ... with *scalability* and *correctness* in mind

 supporting the load of a large IXP and resolving conflicts
SDX enables a wide range of novel applications

<table>
<thead>
<tr>
<th>Category</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>security</td>
<td>Prevent/block policy violation, Prevent participants communication, Upstream blocking of DoS attacks</td>
</tr>
<tr>
<td>forwarding optimization</td>
<td>Middlebox traffic steering, Traffic offloading, Inbound Traffic Engineering, Fast convergence</td>
</tr>
<tr>
<td>peering</td>
<td>Application-specific peering</td>
</tr>
<tr>
<td>remote-control</td>
<td>Influence BGP path selection, Wide-area load balancing</td>
</tr>
</tbody>
</table>
SDX: A Software Defined Internet Exchange

1. Architecture
 programming model

2. Scalability
 control- & data-plane

3. Applications
 inter domain bonanza
SDX: A Software Defined Internet Exchange

1. Architecture
 programming model

Scalability
 control- & data-plane

Applications
 inter domain bonanza
An IXP is a large layer-2 domain
An IXP is a large layer-2 domain where participant routers exchange routes using BGP.
To alleviate the need of establishing eBGP sessions, IXP often provides a Route Server (route multiplexer)
IP traffic is exchanged directly between participants—IXP is forwarding transparent.
With respect to a traditional IXP, SDX...
With respect to a traditional IXP, SDX’s data-plane relies on SDN-capable devices.
With respect to a traditional IXP, SDX’s control-plane relies on a SDN controller.
SDX participants express their forwarding policies in a high-level language built on top of Pyretic (*)

(*) http://frenetic-lang.org/pyretic/
SDX policies are composed of a \textit{pattern} and some \textit{actions}

\begin{verbatim}
match (Pattern), then (Actions)
\end{verbatim}
Pattern selects packets based on any header fields

Pattern:

\[
\text{match (} \text{eth_type, } \text{vlan_id, } \text{srcmac, } \text{dstmac, } \text{protocol, } \text{dstip, } \text{tos, } \text{srcip, } \text{srcport, } \text{dstport} \text{, \\, \\, \&\&, \\, \|\|) }, \text{ then (} \text{Actions} \text{)}
\]
Pattern selects packets based on any header fields, while actions forward or modify the selected packets.

Actions
- drop
- forward
- rewrite

match (Pattern), then (forward, rewrite)
Each participant writes policies independently and transmits them to the controller.

Participant #2 policy

```latex
\text{match}(\text{dstport}=80), \text{fwd}(\#3) \\
\text{match}(\text{dstport}=22), \text{fwd}(\#1)
```

Participant #3 policy

```latex
\text{match}(\text{srcip}=0*), \text{fwd}(\text{left}) \\
\text{match}(\text{srcip}=1*), \text{fwd}(\text{right})
```
Given the participant policies, the controller compiles them to SDN forwarding rules.

Participant #2 policy

- match(dstport=80), fwd(#3)
- match(dstport=22), fwd(#1)

Participant #1

Participant #3 policy

- match(srcip=0*), fwd(left)
- match(srcip=1*), fwd(right)
Given the participant policies, the controller compiles them to SDN forwarding rules

Ensuring isolation

Resolving policies conflict

Ensuring compatibility with BGP
Given the participant policies, the controller compiles them to SDN forwarding rules.

- Ensuring isolation
- Resolving policies conflict
- Ensuring compatibility with BGP

Each participant controls one virtual switch connected to participants it can communicate with.
Given the participant policies, the controller compiles them to SDN forwarding rules.

Ensuring isolation

Resolving policies conflict

Ensuring compatibility with BGP

Participant policies are sequentially composed in an order that respects business relationships.
Given the participant policies, the controller compiles them to SDN forwarding rules.

Ensuring isolation

Resolving policies conflict

Ensuring compatibility with BGP

Policies are augmented with BGP information, guaranteed correctness and reachability.
SDX: A Software Defined Internet Exchange

Architecture
programming model

2
Scalability
control- & data-plane

Applications
inter domain bonanza
The SDX platform faces scalability challenges in both the data- and in the control-plane.
500,000 prefixes, 500+ participants, potentially billions of forwarding rules

100s of policies that have to be updated dynamically according to BGP
To scale, the SDX platform leverages *domain-specific knowledge*

Data-plane:
space
- leverage existing routing platform

Control-plane:
time
- leverage inherent policy structure
leverage existing routing platform
The edge routers, sitting next to the fabric, are tailored to match on numerous IP prefixes.
We consider routers FIB as the first stage of a multi-stage FIB.
Routers FIB match on the destination prefix and set a tag accordingly.

Table #1

Table #2

set a TAG based on IP

Edge router SDN switch
The SDN FIB matches on the tag, not on the IP prefixes
How do we provision tag entries in a router, and what are these tags?

Table #1

Edge router

Table #2

SDN switch

set a TAG based on IP

match TAG
We use BGP as a provisioning interface and BGP next-hops as labels.
All prefixes sharing the same forwarding behavior are grouped together using the same BGP next-hop.
The SDX data-plane maintains one forwarding entry per prefix-group.
Data-plane utilization is reduced considerably as there are *way* more prefixes than prefixes groups

prefixes >> #prefixes groups
By leveraging BGP, the SDX can accommodate policies for hundreds of participants **with less than 30k rules**.
data-plane
 space

control-plane
 time

leverage inherent policy structure
SDX policies exacerbate key characteristics that enable to speed-up compilation time considerably

- Policies are often disjoint
- Policy updates are local
- Policy updates are bursty
SDX policies exacerbate key characteristics that enable to speed-up compilation time considerably.

Policies are often disjoint

Policy updates are local

disjoint policy do not have to be composed together

significant gain as composing policies is time consuming

Policy updates are bursty
SDX policies exacerbate key characteristics that enable to speed-up compilation time considerably.

Policies are often disjoint.

Policy updates are local.

Policy updates are bursty.

- Policy updates usually impact a few prefix-groups.
- 75% of the updates affect no more than 3 prefixes.
SDX policies exacerbate key characteristics that enable to speed-up compilation time considerably.

- Policies are often disjoint
- Policy updates are local
- Policy updates are bursty
- Policy changes are separated of large periode of inactivity
 - 75% of the time, inter-arrival time between updates is at least 10s
The SDX controller adopts a two-staged compilation algorithm.

Fast, but non-optimal algorithm upon updates can create more rules than required.

Slow, but optimal algorithm in background recomputes prefix groups.

Time vs Space trade-off.
In most cases, the SDX takes <100 ms to recomputed the global policy upon a BGP event.
Novel Applications for a SDN-enabled Internet eXchange Point

Architecture
programming model

Scalability
control- & data-plane

Applications
inter domain bonanza
SDX enables a wide range of novel applications

<table>
<thead>
<tr>
<th>Category</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>security</td>
<td>Prevent/block policy violation</td>
</tr>
<tr>
<td></td>
<td>Prevent participants communication</td>
</tr>
<tr>
<td></td>
<td>Upstream blocking of DoS attacks</td>
</tr>
<tr>
<td>forwarding optimization</td>
<td>Middlebox traffic steering</td>
</tr>
<tr>
<td></td>
<td>Traffic offloading</td>
</tr>
<tr>
<td></td>
<td>Inbound Traffic Engineering</td>
</tr>
<tr>
<td></td>
<td>Fast convergence</td>
</tr>
<tr>
<td>peering</td>
<td>Application-specific peering</td>
</tr>
<tr>
<td>remote-control</td>
<td>Influence BGP path selection</td>
</tr>
<tr>
<td></td>
<td>Wide-area load balancing</td>
</tr>
</tbody>
</table>
SDX enables a wide range of novel applications

<table>
<thead>
<tr>
<th>Category</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>security</td>
<td>Prevent/block policy violation</td>
</tr>
<tr>
<td></td>
<td>Prevent participants communication</td>
</tr>
<tr>
<td></td>
<td>Upstream blocking of DoS attacks</td>
</tr>
<tr>
<td>forwarding optimization</td>
<td>Middlebox traffic steering</td>
</tr>
<tr>
<td></td>
<td>Traffic offloading</td>
</tr>
<tr>
<td></td>
<td>Inbound Traffic Engineering</td>
</tr>
<tr>
<td></td>
<td>Fast convergence</td>
</tr>
<tr>
<td>peering</td>
<td>Application-specific peering</td>
</tr>
<tr>
<td>remote-control</td>
<td>Influence BGP path selection</td>
</tr>
<tr>
<td></td>
<td>Wide-area load balancing</td>
</tr>
</tbody>
</table>
SDX can improve inbound traffic engineering
Given an IXP Physical Topology and a BGP topology,
Given an IXP Physical Topology and a BGP topology, Implement B’s inbound policies

B’s inbound policies

<table>
<thead>
<tr>
<th>to</th>
<th>from</th>
<th>receive on</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.0.1/24</td>
<td>A</td>
<td>left</td>
</tr>
<tr>
<td>192.0.2/24</td>
<td>C</td>
<td>right</td>
</tr>
<tr>
<td>192.0.2/24</td>
<td>ATT_IP</td>
<td>right</td>
</tr>
<tr>
<td>192.0.1/24</td>
<td>*</td>
<td>right</td>
</tr>
<tr>
<td>192.0.2/24</td>
<td>*</td>
<td>left</td>
</tr>
</tbody>
</table>
How do you that with BGP?

B’s inbound policies

<table>
<thead>
<tr>
<th>to</th>
<th>from</th>
<th>receive on</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.0.1/24</td>
<td>A</td>
<td>left</td>
</tr>
<tr>
<td>192.0.2/24</td>
<td>C</td>
<td>right</td>
</tr>
<tr>
<td>192.0.2/24</td>
<td>ATT_IP</td>
<td>right</td>
</tr>
<tr>
<td>192.0.1/24</td>
<td>*</td>
<td>right</td>
</tr>
<tr>
<td>192.0.2/24</td>
<td>*</td>
<td>left</td>
</tr>
</tbody>
</table>
It is hard
BGP provides few knobs to influence remote decisions

Implementing such a policy is configuration-intensive
using AS-Path prepend, MED, community tagging, etc.
... and even impossible for some requirements

BGP policies cannot influence remote decisions based on source addresses

<table>
<thead>
<tr>
<th>to</th>
<th>from</th>
<th>receive on</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.0.2.0/24</td>
<td>ATT_IP</td>
<td>right</td>
</tr>
</tbody>
</table>
In any case, the outcome is unpredictable

Implementing such a policy is configuration-intensive using AS-Path prepend, MED, community tagging, etc.

There is no guarantee that remote parties will comply one can only “influence” remote decisions

Networks engineers have no choice but to “try and see” which makes it impossible to adapt to traffic pattern
With SDX, implement B’s inbound policy is easy

SDX policies give any participant *direct* control on its forwarding paths

<table>
<thead>
<tr>
<th>to</th>
<th>from</th>
<th>fwd</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.0.1/24</td>
<td>A</td>
<td>left</td>
</tr>
<tr>
<td>192.0.2/24</td>
<td>B</td>
<td>right</td>
</tr>
<tr>
<td>192.0.2/24</td>
<td>ATT_IP</td>
<td>right</td>
</tr>
<tr>
<td>192.0.1/24</td>
<td>*</td>
<td>right</td>
</tr>
<tr>
<td>192.0.2/24</td>
<td>*</td>
<td>left</td>
</tr>
</tbody>
</table>

B’s SDX Policy

- `match(dstip=192.0.1/24, srcmac=A), fwd(L)`
- `match(dstip=192.0.2/24, srcmac=B), fwd(R)`
- `match(dstip=192.0.2/24, srcip=ATT), fwd(R)`
- `match(dstip=192.0.1/24), fwd(R)`
- `match(dstip=192.0.2/24), fwd(L)`
SDX enables a wide range of novel applications

- **security**
 - Prevent/block policy violation
 - Prevent participants communication
 - Upstream blocking of DoS attacks

- **forwarding optimization**
 - Middlebox traffic steering
 - Traffic offloading
 - Inbound Traffic Engineering
 - Fast convergence

- **peering**
 - Application-specific peering

- **remote-control**
 - Influence BGP path selection
 - Wide-area load balancing
SDX enables a wide range of novel applications

- **security**
 - Prevent/block policy violation
 - Prevent participants communication
 - **Upstream blocking of DoS attacks**

- **forwarding optimization**
 - Middlebox traffic steering
 - Traffic offloading
 - Inbound Traffic Engineering
 - Fast convergence

- **peering**
 - Application-specific peering

- **remote-control**
 - Influence BGP path selection
 - Wide-area load balancing
SDX can help in blocking DDoS attacks closer to the source
AS7 is victim of a DDoS attack originated from AS13
AS7 can remotely install *drop()* rule in the SDX platforms.
match(srcip=Attacker/24, dstip=Victim/32) >> drop()
SDX: A Software Defined Internet Exchange

Architecture
programming model

Scalability
control- & data-plane

Applications
inter domain bonanza
Our SDX platform can serve as skeleton for a SDX ecosystem

We have running code (*)

with full BGP integration, check out our tutorial

We are in the process of having a first deployment
SNAP @ ColoATL, planned deployment with GENI

Many interested parties already
important potential for impact

(*) https://github.com/sdn-ixp/sdx/wiki
Demonstration
https://github.com/sdn-ixp/sdx/wiki
SDX Controller
Route Server
172.0.255.254

SDX Switch

A1
100.0.0.0/24
110.0.0.0/24
172.0.0.1
match(dstport=80) >> fwd (B) +
match(dstport=4321/4322) >> fwd(C)

B1
172.0.0.11
140.0.0.0/24
150.0.0.0/24

C1
172.0.0.21
140.0.0.0/24
150.0.0.0/24
match(dstport=4321) >> fwd (C1) +
match(dstport=4322) >> fwd(C2)

C2
172.0.0.22
140.0.0.0/24
150.0.0.0/24
BGP picked routes
SDX: A Software Defined Internet Exchange

Laurent Vanbever
www.vanbever.eu

FGRE Workshop (Ghent, iMinds)
July, 8 2014