
SDX: A Software Defined Internet Exchange∗

Arpit Gupta†, Laurent Vanbever?, Muhammad Shahbaz†
Sean P. Donovan†, Brandon Schlinker‡, Nick Feamster†, Jennifer Rexford?

Scott Shenker�, Russ Clark†, Ethan Katz-Basset‡
†Georgia Tech ?Princeton University �UC Berkeley ‡USC

1. Motivation
Today’s Internet routing is unreliable, inflexible, and diffi-

cult to manage. Most of the problems are rooted in the Bor-
der Gateway Protocol’s (BGP) mode of operations, which
has three particularly annoying limitations: It (i) routes only
on destination IP prefixes; (ii) can influence (not control!)
direct neighbors only; (iii) provides an indirect way of con-
trolling forwarding paths.

We believe that Software Defined Networking (SDN) can
easily remove each of these limitations by enabling: (i) flex-
ible forwarding policies on many different packet-header
fields; (ii) remote control as a SDN controller can receive
control message from remote networks (on a bilateral ba-
sis); (iii) direct control on the forwarding paths by installing
packet-processing rules directly in the data-plane.

Yet, simply deploying a few SDN switches here and there
will not solve the problems of interdomain routing. Actu-
ally, improving Internet routing is–and has always been—a
perennial problem in a world with 50,000 independently op-
erated networks and a huge installed base of BGP routers.

We turn to Internet Exchange Points (IXPs) as a natural
place to deploy new SDN-based inter-domain routing solu-
tions. IXPs are topologically located at strategic positions—
with most of the Internet traffic exchanged at around 300
IXPs around the globe. Even one deployment can there-
fore have a large impact. IXPs have also been particularly
opened to innovations, a direct consequence of the fact that
they are usually managed by a handful of people. Finally,
IXPs are large switched networks and some of them have
already started to roll out SDN-enabled equipments.

Our goal in this project is therefore to improve wide-area
traffic delivery by designing, prototyping, and deploying
Software Defined eXchanges (SDX) throughout the world.
SDX platforms remove the pain out of BGP by enabling their
participants to realize fine-grained inter-domain policies eas-
ily, without requiring any change to the existing protocol.

2. Challenges
Designing SDX requires addressing a lot of challenges.

Some of them are:

Providing the right programming abstractions: In SDX,
multiple competing participants with conflicting goals share
the same data-plane. SDX needs the right abstractions to bal-
∗Also appears in the main program [1].

ance the desire for flexibility with isolation. Our SDX plat-
form provides each participant with the illusion of owning a
(virtual) SDN switch, where other participants connect using
a single link. This abstraction hides many details such as the
underlying exchange topology. Moreover, this abstraction
allows each AS to specify its own policies at the exchange
independently from other ASes.

Interacting with BGP to guarantee correctness: SDX
cannot let its participants define policies in a vacuum, with-
out regard to how they relate to the global routing system.
The SDX therefore gives participating ASes ways to define
forwarding policies relative to the current BGP routes and
ensure safe interaction with the existing routing system.

Ensuring scalability: SDX needs to support hundreds of
participants, hundreds of thousands of IP prefixes, and poli-
cies that match on multiple packet-header fields—all while
using FIB constrained SDN switches. To enable scalable
operation, the SDX platform minimizes both the space (#
of flow rules) and the time (time for policy compilation)
complexities. SDX leverages existing control-plane signal-
ing mechanism to reduce the data-plane state and domain-
specific knowledge to speed up the compilation of policies.

Enabling a realistic deployment: We have built a SDX
prototype and created multiple example applications [3] to
demonstrate that our prototype scales to many participants,
policies and prefixes. In this demo, we’ll present one such
application highlighting various capabilities of our platform.

3. Implementation
The SDX consists of a switching fabric, BGP edge routers,

and a SDX controller. Edge routers are unmodified and they
simply establish normal eBGP sessions with the SDX con-
troller, which also acts as a BGP Route Server. Participants
send their policies written in Pyretic [2] to the SDX con-
troller as JSON messages. The SDX controller implementa-
tion is divided into two processing pipelines (see Figure 1).
One dealing with SDX policies (Policy Compiler), and the
other with BGP routes (Route Server).

Policy Compiler takes Pyretic based policies of all the par-
ticipants as input and produces aggregate forwarding rules.
In the process, it augments the policies to (i) enable isolation;
(ii) reduce data-plane state; (iii) and integrate with advertised
BGP routes. Based on the virtual switch abstraction, the



Participants

Policy Handler

Isolation

Incorporating BGP

Default Forwarding

Composition

Pyretic

Policies

ExaBGP

BGP Updates

BGP decision 
process

BGP 
Announcements

OpenFlow Rules
Access RiBs or ARP table

Optimization
(i.e., compute VNH)

P
o
lic

y
 C

o
m

p
ile

r

Input RIBs

Local RIBs

Route Server

Trigger compilation

ARP

Figure 1: The SDX controller implementation is based on two communicat-
ing pipelines: one dealing with SDX policies, and another one dealing with
the processing of BGP routes.

policy compiler isolates participants policies by augment-
ing them with additional match statements based on par-
ticipant’s physical/virtual ports. The compiler then restricts
each participant’s outbound policies according to advertised
BGP routes. It also analyses each participant’s policies to
identify sets of prefixes sharing the exact same forwarding
behavior and assigns one tag (Virtual Next-Hop) to each of
them. It then rewrites the policies, replacing match on desti-
nation prefixes with match on tags instead. In the SDX, we
use IP Next-Hop as tags and rely on BGP to provision (trans-
parently) these tags in the participant edge routers directly.
The SDX controller therefore also has an ARP-resolver to
respond to queries for Virtual Next-Hop IP address. As a
final step, the compiler composes policies of all the partici-
pants together to produce a set of forwarding rules. The pol-
icy handler also receives events from Route Server and from
the participants whenever there is change in the best path for
a prefix or in participant’s policy, respectively.

Route Server performs the default functionality of a typ-
ical route server. It receives BGP advertisements from all
the participants and computes the best paths on their behalf.
It also: (i) provides the advertised route information to the
compiler pipeline; (ii) advertises virtual next hops for each
prefix rather than the physical ones; (iii) sends an event to
the policy handler whenever best route to a prefix changes.

4. Demonstration Outline
The main goal of our demonstration is to highlight four

major capabilities of SDX: (i) enabling participants to con-
trol the traffic flows based on the portions of flow space other
than destination IP prefixes; (ii) enabling dynamic compo-
sition of participant’s policies into a single set of coherent
flow rules; (iii) minimizing the data-plane state by leverag-

SDX Fabric

AS A router

AS C router

AS B router

BGP session

(match(dstport=80)

A's policy

Application-specific peering

(match(srcip={0/1}) >> fwd(B1)) +

(match(srcip={128/1}) >> fwd(B2))

>> fwd(B)

B1

B2

B's policy

Inbound Traffic Engineering

SDX controller

Pyretic/ExaBGP

OVS

Quagga

Quagga

Quagga

Figure 2: Demonstration setup. By default, all traffic is sent to C. When A
provides its policy, all HTTP traffic for the prefixes reachable via B is sent
to B. This traffic is then load-balanced according to B’s inbound policy.

ing the existing BGP control-plane; (iv) guaranteeing correct
forwarding behavior in sync with advertised BGP routes.

Figure 2 depicts our demonstration setup. It consists of
a SDX controller (which includes a route server) connected
to an Open vSwitch software (OVS) switch. We also have
three BGP edge routers, running the Quagga routing engine,
connected to the switch. These BGP routers belong to the
participating ASes: ASA, ASB , and ASC . ASB’s router is
connected via two input ports at SDX. ASB and ASC adver-
tise prefixes p1-p5 and p1-p10 respectively to the SDX con-
troller. For each prefix, the route server chooses the route via
ASC as best. Policies are configured as shown in Figure 2.
ASA sends uniformly distributed traffic for different sets of
source/destination IP addresses and destination ports.

In our demonstration, we will start without any SDX poli-
cies. We will observe that all the traffic from ASA exits via
ASC . Next, we will send ASA’s application specific policies
to the controller. Now, we will observe ASA’s HTTP traffic
leaving the switching fabric via B1. This demonstrates that
SDX enables control over traffic flows beyond destination
IP prefixes. We will also see that non-HTTP traffic for pre-
fixes p1-p5 and all the traffic from prefixes p6-p10 still exits
via ASC . This demonstrates that the SDX controller is in
sync with the advertised BGP routes. We will now apply
ASB’s inbound traffic engineering policies and will observe
that half the HTTP traffic leave via port B1 and the remain-
ing half via B2. This demonstrates how SDX composes poli-
cies of two participants with disparate high-level goals. In
addition to this, we will also show the flow tables to demon-
strate the efficacy of using Virtual Next Hops to reduce the
number of flow rules in the data-plane.

REFERENCES
[1] A. Gupta, L. V. M. S. S. Donovan, B. Schlinker, N. Feamster,

J. Rexford, S. Shenker, R. Clark, and E. Katz-Bassett. Sdx: A software
defined internet exchange. In Proceedings of the 2014 ACM
SIGCOMM Conference, Chicago, Illinois, Aug. 2014. ACM.

[2] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker.
Composing software defined networks. In Proc. USENIX NSDI, 2013.

[3] Software Defined Internet Exchange Point (SDX) Project.
https://github.com/sdn-ixp/.

2


