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ABSTRACT
Software-Defined Networking (SDN) control software executes in
highly asynchronous environments where unexpected concurrency
errors can lead to performance or, worse, reachability errors. Un-
fortunately, detecting such errors is notoriously challenging, and
SDN is no exception.

Fundamentally, two ingredients are needed to build a concur-
rency analyzer: (i) a model of how different events are ordered, and
(ii) the memory locations on which event accesses can interfere. In
this paper we formulate the first happens-before (HB) model for
SDNs enabling one to reason about ordering between events. We
also present a commutativity specification of the network switch,
allowing us to elegantly capture interference between concurrent
events.

Based on the above, we present the first dynamic concurrency
analyzer for SDNs, called SDNRACER. SDNRACER uses the HB
model and the commutativity rules to identify concurrency viola-
tions. Preliminary results indicate that the detector is practically
effective—it can detect harmful violations quickly.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Opera-
tions; D.2.4 [Software Engineering]: Software/Program Verifica-
tion; D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Software Defined Networking, OpenFlow, Commutativity Specifi-
cation, Happens-before, Nondeterminism

1. INTRODUCTION
Software-Defined Networking (SDN) holds a great promise for

managing network complexity. The key idea of SDNs is to enable
logically-centralized and direct control of the forwarding behavior
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of a network. However, realizing this vision relies on the diffi-
cult task of building highly sophisticated and reliable SDN control
software. Indeed, by design, control software operates on top of
a highly asynchronous environment: events (e.g. packets) arriving
at a switch, link or node failures, expiring flows can be dispatched
to the controller at any time, all non-deterministically.

Highly asynchronous programs are prone to concurrency errors
caused by interfering access (a form of data races) to shared mem-
ory locations [1], and SDN control software is no exception. How-
ever, it is well known that discovering those errors is difficult as
they often depend on a particular ordering of specific events. At
the same time, detecting these issues is important as they are of-
ten the root cause of deeper semantic problems (e.g., blackholes,
forwarding loops or non-deterministic forwarding).

This paper present techniques for automatically detecting con-
currency errors in SDNs. Conceptually, there are two places where
interference can occur in SDNs: (i) within the control software it-
self (e.g., if it is multi-threaded or distributed), and (ii) between
the control software and the network switches. Indeed, network
switches can be seen as memory locations which are read and mod-
ified by various events. The first kind of interference can be de-
tected with standard approaches, e.g., [2]. Thus, in this short paper,
we focus on techniques specific to the second kind.

To capture asynchrony between a control program and the un-
derlying network, we present the first formulation of a happens-
before (HB) relation [3] for the most commonly used OpenFlow
features. Our HB relation is based on an in-depth study of the
OpenFlow specifications [4] as well as on the behavior of network
switches [5]. The HB relation succinctly captures the partial order-
ing of events in an SDN.

In addition to the HB model, we present a commutativity speci-
fication of a network switch that precisely captures the conditions
under which two operations on the switch commute. This specifi-
cation elegantly abstracts the behaviors of the switch and is key to
enabling precise analysis of the network.

Based on our models, we implemented SDNRACER, a dynamic
and controller-agnostic concurrency analyzer for SDN networks
and used it to detect various data races in real-world SDN appli-
cations. A manual inspection of a subset of the reported races con-
firmed that some of them were real bugs. The main contributions
of this paper are:

• A happens-before (HB) model capturing the asynchronous
interaction between an OpenFlow-based SDN controller and
the underlying devices (§3).
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Figure 1: An example of stateful firewall application (right) and a
sequence of events (left), which leads to a concurrency error which
mistakenly blocks traffic from Host 2.

• A commutativity specification capturing the precise condi-
tions under which two high-level operations on the network
switch commute (§4).

• An implementation of a dynamic analyzer, called SDNRACER,
which uses the HB model and the commutativity specifica-
tion to automatically detect concurrency violations occurring
on network switches.

• A preliminary evaluation indicating that the tool is able to un-
cover concurrency issues leading to harmful behaviors (e.g.,
loss of reachability) (§5).

2. MOTIVATION
In this section, we explain in more detail how concurrency errors

can arise in SDN with two motivating examples.

Sources of Races For our purposes, a SDN controller is an event-
driven program in which events can occur both asynchronously
(a packet received from the network, a link failure) or synchronously
(as a result of a request issued by the controller). A SDN controller
basically writes to and reads from the flow table of switches. The
flow table of a switch is an ordered (by priority) list of forward-
ing entries against which packets are being matched and the corre-
sponding forwarding action is taken. As such, a SDN switch can be
thought of as a separate application that reads from the flow table
whose state is written and queried by the controller.

In the following, we consider that a concurrency violation arises
whenever we encounter two unordered accesses to the switch flow
table, one of which must be a write produced by the controller.

Example#1. Stateful firewall allows traffic to be blocked. Con-
sider a controller program running a stateful firewall, as shown in
Fig. 1, that allows internal hosts to initiate communication with ex-
ternal hosts, but blacklists external hosts from sending unsolicited
traffic to internal hosts.

A possible sequence of events is shown in Fig. 1. Host 1 sends
a packet 1© to Host 2 which hits the switch 2© and is sent to the
controller 3©. Since the communication is initiated by internal
host, the controller pushes down two FLOW_MOD rules and sends a
PACKET_OUT message instructing the switch to forward the packet.
Because the switch is allowed to execute messages out of order, it
handles the PACKET_OUT message 4© first and sends 5© the packet
further to Host 2. The Host 2 receives the packet 6© and responds
immediately with a packet 7© that hits the switch back 8© before
the rules have been installed. Consequently, the return packet goes
to the controller 9©. In the meantime, the two rules enabling the
bi-directional communication are installed 10©–11©. As the return
packet comes from Host 2, the controller instructs the switch to
install a drop rule 12© which drops the communication.
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if dst == server:
_rep = rep[idx]
idx = (idx+1)%2
install_path(src,_rep)
packet_out(pkt,in_sw)
...
def install_path(s,d):
path = dijkstra)(s,d)
for i in path:
flow_mod(i,s,d,
fwd(p[i+1]))

Figure 2: An example of a simple load-balancing application
(right) and a sequence of events (left), which leads to a forward-
ing loop.

In this example, there exists a concurrency error due to non-
deterministic order between the write event 11©, the installation of
the rule matching packets from Host 2, and the read event 8©, the
reception by the switch of the return packet from Host 2. A simple
fix is for the controller to issue a BARRIER_REQUEST message after
the two rule installation requests and before sending the packet out
to Host 2.

Example#2. A non-deterministic forwarding loop in a load bal-
ancer. In this example we consider a controller that is running
a simple load-balancer application, Fig. 2.

Consider the sequence of events shown in Fig. 2: Host 1 sends
a request directed to a farm of web server replicas identified by the
IP address 198.51.100.1. That request hits the switch 1© and is
sent to the controller 2©. The controller elects Replica#1, computes
the shortest-path between S1 and S2, pushes down two FLOW_MOD

on S1 and S2, and sends a PACKET_OUT message instructing S1
to forward the packet to S2. S1 installs the rule 3© and handles
the message PACKET_OUT 4© that it sends to S2 5©. The packet
hits S2 6© before the corresponding flow rule is installed 8© and
is sent back to the controller 7©. Assuming a round-robin selec-
tion algorithm, the controller now elects Replica#2, computes the
shortest-path between S2 and S3 and pushes down the correspond-
ing flow rules on S2, S1 and S3. From this point on, the traffic is
being processed in a non-deterministic manner as S1 and S2 each
have two rules with the same priority that match each direction of
the traffic. Concretely, the traffic either ends up in a forwarding
loop, if S1 uses the rule to forward the traffic to S2, and vice-versa
or hits one of the two replica (again non-deterministically).

In this example, the concurrency error arises between the read
event 6©, the outbound packet received by S2 and the write event
8© on S2 matching it.

3. CAPTURING THE ASYNCHRONY
We present a formal model capturing the asynchrony arising in

OpenFlow. The formal model is defined in terms of two core build-
ing blocks. Each of these blocks is a required component for de-
veloping a concurrency analyzer:

• A definition of the (potentially concurrent) operations and
atomic events.

• A definition of the happens-before (HB) relation between the
events.

3.1 Defining Operations and Events
We begin by defining a small set of events, denoted as Event,

which succinctly encapsulate the relevant operations performed by
network switches and hosts in the network. The operations are de-
fined in §4.2 and contain the reads and writes (updates) to the flow



PACKETS:
α ∈ {PacketHandle,MsgHandle, PacketSend,HostSend}

β ∈ {PacketHandle,HostHandle, PacketSend}
β.pid_in ∈ α.pids_out

α ≺ β
MESSAGES:

α ∈ {PacketHandle,MsgHandle,MsgSend}
β ∈ {MsgHandle,MsgSend} β.mid_in ∈ α.mids_out

α ≺ β
HOST:
α ∈ HostHandle β ∈ HostSend α.pids_out = β.pid_in

α ≺ β

FLOWREMOVED:
α =MsgHandle α.msg_type = FLOW_MOD

β =MsgSend β.msg_type = FLOW_REMOVED α <π β
α.switch_id = β.switch_id α.match = β.match

α.cookie = β.cookie α.priority = β.priority

α ≺ β
BARRIERPOST:

α, β ∈MsgHandle α.switch_id = β.switch_id
α.msg_type = BARRIER_REQUEST α <π β

α ≺ β
BARRIERPRE:

α, β ∈MsgHandle α.switch_id = β.switch_id
β.msg_type = BARRIER_REQUEST α <π β

α ≺ β

Figure 3: Happens-before rules capturing ordering of packets and OpenFlow messages for a trace π.

table. For each event, we define a set of attributes that describe
the event and are later used to build the HB ordering. The set of
attributes is as follows:

〈pid_in, pids_out,mid_in,mids_out,msg_type, switch_id〉

where pid_in, pids_out denote identifiers assigned to packets and
mid_in, mids_out denote identifiers assigned to sets of Open-
Flow messages. Themsg_type is an OpenFlow message type. The
relevant message types for concurrency analysis are PACKET_IN,
PACKET_OUT, BARRIER_REQUEST, PORT_MOD, FLOW_REMOVED and
FLOW_MOD. Finally, switch_id is a switch identifier. The out key-
word for identifiers denotes that the instrumentation always gen-
erates a new identifier whereas the in keyword means that a pre-
viously generated identifier is used. If an event generates no fur-
ther events (e.g. simply the flow table is updated) the attributes
pids_out and mids_out are initialized to the empty set ∅. Simi-
larly, pid_in and mid_in are initialized to the undefined value ⊥
if no existing packet or message was processed. Depending on the
event type, only a subset of attributes is used. Following events
capture the behavior of the switches, hosts and controllers:

PacketHandle(pid_in, pids_out,mids_out) denotes that a switch
processed a data plane packet pid_in. As a result of processing this
packet, either an OpenFlow message is generated and sent to the
controller (in which case mids_out contains a message identifier
and pids_out the identifier of the packet stored in the buffer) or
the packet is forwarded (in which case pids_out contains the new
packet identifier).

MsgHandle(mid_in, pid_in, pids_out, mids_out, msg_type)
denotes that switch processed the OpenFlow messagemid_inwith
type msg_type. The pid_in attribute is set to ⊥ unless a packet
is read from the switch buffer. The mid_in attribute is filled in by
the controller instrumentation.

PacketSend(pid_in, pids_out) denotes that the packet pid_inwas
sent out to the data plane with the identifier in pids_out.

MsgSend(mid_in, mids_out) denotes that the OpenFlow mes-
sage with mid_in was sent to the controller with the new identifier
in mids_out.

HostHandle(pid_in, pids_out), HostSend(pid_in, pids_out) de-
note packet receive and send by a host respectively.

3.2 Defining the Happens-Before Ordering
Having defined what the relevant events for concurrency analysis

are, we now define a happens-before (HB) relation between them.
The HB relation denoted as ≺ ⊆ Event × Event is a binary

relation that is irreflexive and transitive. For convenience, we use
notation α ≺ β instead of (α, β) ∈≺. For each finite trace consist-
ing of a sequence of events π = α0 · α1 · · · · · αn we use α <π β
to denote that event α occurs before event β in π. We formalize the
HB rules for a given trace π in Fig. 3.

PACKETS This rule orders events that send a packet before events
that receive the packet. Each event handling a packet pid_in gen-
erates new, unique pids_out. This guarantees that there is at most
one pair in the trace for which pid_in = pids_out. There could be
no pair in case the packet is dropped. In Fig. 1, this rule introduces
the orderings 1©≺ 2©, 4©≺ 5©, 5©≺ 6© and 7©≺ 8©.

MESSAGES This rule orders messages sent to the controller from
the switch with the responses the controller sends back and the
other way around. Note that there could be multiple MsgHandle
with the same mid_in in case the controller sends multiple mes-
sages in the response. The controller instrumentation captures the
mapping from MsgSend to MsgHandle. In Fig. 1, this rule in-
troduces the ordering 2©≺ 3©, 3©≺ 4©, 3©≺ 10©, 3©≺ 11©, 8©≺ 9©
and 9©≺ 12©.

BARRIER For performance reasons, the switch is allowed to han-
dle messages received from the controller in a different order from
the one they were sent. To enforce ordering, the controller can is-
sue a BARRIER_REQUEST message which ensures that the network
switch finishes processing of all previously received messages, be-
fore executing any messages beyond the BARRIER_REQUEST.

HOST There is an ordering between the host receiving a packet and
responding to it. We note that the implementation of this rule is
speculative as we treat the host as a black box that can run arbitrary
applications or protocols. In Fig. 1, this rule introduces the ordering
6©≺ 7©.

FLOWREMOVED This rule captures the fact that the switch can
send a FLOW_REMOVE message only after the corresponding flow
was added to the table using the FLOW_MOD message.

Key Points Our goal was to model the ordering of the events as
precisely as possible, while at the same time having a succinct and
precise model. For example, one could simply define the events at
finer granularity (such as write packet to a buffer or a read packet
from buffer). However, such a definition would be more difficult
and cumbersome to work with as it would expose internal imple-
mentation details of the switch (that might differ between imple-
mentations) and contain more events and happens-before rules.



4. COMMUTATIVITY SPECIFICATION
In this section we provide a complete commutativity specifica-

tion for the network switch based on the OpenFlow specification
1.0 [4]. We first informally discuss the operation of an OpenFlow
switch and then introduce the notation used throughout the rest of
the section.

4.1 Flow Table: Entries
A basic component of each OpenFlow switch is the flow table.

This table is responsible for performing packet lookups and packet
forwarding. The flow table contains a set of entries used to match
incoming packets.

Packet. The packet contains a header and a payload. The header
consists of a set of fields (e.g., IP source, IP destination or VLAN
id) used to match packets against flow table entries. The payload is
a sequence of bits and does not affect our specification (discussed
later). For a packet pkt we use the notation pkt.h to refer to the
header associated with pkt.

Flow Table Entry. The flow table entry contains the fields match,
priority, counters and actions. The match can be either an exact
match or a wildcard match. Priority is a number specifying entry
preference in case the packet matches multiple flow entries. Coun-
ters are used for statistics and actions specify a set of forwarding
operations to be performed on a matching packet.

For a flow table entry e we use the notation e.m, e.p and e.a to
refer to the match, priority and actions respectively.

A match between two entries e1 and e2 is exact, denoted as
e1.m = e2.m, when all match fields are exactly the same (in-
cluding the wildcards). A match between e1 and e2 is wildcard,
denoted as e1.m ⊆ e2.m, if some of the fields in e1.m are not an
exact match but contained in e2.m due to more permissive wild-
cards. The same definition of wildcard and exact match applies to
packet and flow table entry.

4.2 Flow Table: Operations
There are four types of operations that can be performed on the

flow table. A read operation is performed on each received packet
while add, mod and del are issued by the controller using the
FLOW_MOD command. In our work we use the OpenFlow specifica-
tion 1.0 [4] to define the semantics of all of the above operations.
read(pkt)/eread: The read operation denotes that a packet pkt

is matched against the flow table to determine the highest priority
flow table entry eread that should be applied. If there is no such
flow table entry, eread is set to the empty value none. Note that the
value of eread depends on the state of the flow table against which
the packet pkt is being matched.
add(eadd, no_overlap): An add operation tries to add a new

entry eadd to the flow table. If no_overlap is true then a new entry
is not added if a single packet may match both the new entry and
an entry already in the flow table, and both entries have the same
priority.
mod(emod, strict): A mod operation modifies existing entries

in the flow table. A boolean flag strict is used to distinguish be-
tween two types of modifications issued by the controller – MODIFY
and MODIFY_STRICT. In strict mode, exact match (including the
priorities) is used to determine whether an entry should be modi-
fied whereas in non-strict mode a wildcard match is used. Note that
mod is also allowed to add entry in case no match is found.
del(edel, strict): A del operation deletes all entries that match

the entry edel in the flow table. Similarly to the mod operation,
strict affects how the matching is performed.

4.3 Flow Table: Commutativity
Intuitively, the commutativity captures whether changing the or-

der of two operations affects the computation result. The com-
putation results include relevant flow table state together with the
return values (if any) of the participating operations. We consider
two flow tables to be in the same state if they contain identical flow
table entries, except for counters which are ignored.

The commutativity specification is conveniently specified in the
form of a predicate ϕ over pairs of operations using formulas writ-
ten in propositional logic. For a pair of operations a and b, the
predicate ϕab evaluates to true if operations commute and to false
otherwise.

Auxiliary Relations. To avoid clutter we define three auxiliary
functions. First, we overload the set intersection operator e1 ∩ e2
for two entry match structures (or packet headers) and use it to
compute all packet headers than may match both. Next, we use
e1

strict

⊆ e2 to model the semantics of the table entry matching in the
strict mode, defined as follows:

e1
strict

⊆ e2 :=
e1.m = e2.m ∧ e1.p = e2.p

e1.m ⊆ e2.m
if strict
if ¬strict

A deletes predicate models the semantics of a delete operation
and specifies whether an entry e can be deleted:

deletes(edel, e, strict) :=

e
strict

⊆ edel ∧ e.out_port ⊆ edel.out_port

Commutativity Specification. The commutativity specification of
an OpenFlow switch is shown in Fig. 4. All of the rules are writ-
ten in the form that specifies when the operations do not commute
which is then negated. We adopt this approach as the resulting rules
are more intuitive to read. What follows is a description of some of
the non-trivial rules.

ϕ(add, add): Adding two entries does not commute if: i) the sec-
ond entry overwrites the first one, or ii) the second entry is not
added because the first entry is already in the table. The entries can
overwrite each other only if both are added without no_overlap
option and their match and priority is identical. In this case the
old entry is replaced with the new one and as long as their actions
are different they do not commute. If at least one entry specifies
the no_overlap option, then they do not commute if they have the
same priority and there exists an entry that can be matched by
both entries.

ϕ(add,mod): In case the no_overlap option is not set, the add
andmod do not commute in cases when they are allowed to modify
the same entry with different actions. If no_overlap is set, then the
mod can add a new entry that overlaps with addwhich would result
in add not being added.

ϕ(del,mod): If modify affects only a single entry (strict mode),
we simply check whether this entry can be deleted. Otherwise, as
long as both rules can match the same entry, they do not commute.

ϕ(add, del): The add and del do not commute if: i) the added
entry can be removed by a subsequent delete, or ii) the delete does
not remove the entry to be added but might enable adding it by
removing some other entries. This situation arises when headers
that may match add and del overlap.

ϕ(mod,mod): If neither modify operation uses strict mode then
they do not commute if there is an entry that may match both.



ϕ
read(pkt)/eread
add(eadd, no_overlap) :=

¬(eread 6= none ∧ eread = eadd)
¬(pkt.h ⊆ eadd.m ∧ (eread = none
∨(eread.p ≤ eadd.p ∧ eread.a 6= eadd.a)))

if add < read
if read < add

ϕ
read(pkt)/eread
mod(emod, strict)

:= ¬(eread 6= none ∧ eread
strict

⊆ emod ∧ eread.a = emod.a)
¬(eread 6= none ∧ pkt.h ⊆ emod.m ∧ eread.a 6= emod.a)

if mod < read
if read < mod

ϕ
read(pkt)/eread
del(edel, strict)

:=
¬(pkt.h ⊆ edel.m)
¬(eread 6= none ∧ deletes(edel, eread, strict))

if del < read
if read < del

ϕ
del(edel, strictdel)
mod(emod, strictmod)

:=
¬(deletes(edel, emod, true))
¬(edel.m ∩ emod.m 6= ∅)

if strictmod
otherwise

ϕ
add(eadd, no_overlap)
del(edel, strict)

:= ¬(deletes(edel, eadd, strict) ∨ (no_overlap ∧ eadd ∩ edel 6= ∅))

ϕ
mod(e1, strict1)
mod(e2, strict2)

:=

¬(e1.m ∩ e2.m 6= ∅ ∧ e1.a 6= e2.a)
¬(e1.m = e2.m ∧ e1.p = e2.p ∧ e1.a 6= e2.a)

¬((e1
strict2
⊆ e2 ∨ e2

strict1
⊆ e1) ∧ e1.a 6= e2.a)

if ¬strict1 ∧ ¬strict2
if strict1 ∧ strict2
otherwise

ϕ
add(eadd, no_overlap)
mod(emod, strict)

:= ¬(eadd
strict

⊆ emod ∧ eadd.a 6= emod.a)
¬(eadd ∩ emod 6= ∅)

if ¬no_overlap
otherwise

ϕ
add(e1, no_overlap1)
add(e2, no_overlap2)

:=
¬(e1.m ∩ e2.m 6= ∅ ∧ e1.p = e2.p)
¬(e1.m = e2.m ∧ e1.p = e2.p ∧ e1.a 6= e2.a)

if no_overlap1 ∨ no_overlap2
otherwise

Figure 4: Commutativity specification of an OpenFlow switch. Two read and two del operations always commute.

If they are both strict then this entry needs to be exactly the same.
Otherwise they do not commute if they are allowed to change the
entry of each other.

ϕ(read, add/mod/del): For read operations we distinguish two
cases depending on the order in which the operations are executed
in the trace. If the read happens first, the operations do not com-
mute if the matched entry is not guaranteed to match after second
operation is performed. Since we know the concrete flow entry that
matched the initial read, such check can be performed precisely.
In the case of a read executing second, we simply check whether
the matched rule is identical to the one added or modified. For
the delete operation, we conservatively check whether an entry that
matches the packet can be removed.

Key Points. Note, that for the read operations our commutativ-
ity specification incorporates parts of the flow table state by using
the return values. Further, commutativity rules for read are spe-
cialized based on the trace order, which is a direct consequence
of depending on the state in which the operations were performed.
This allows us to significantly reduce the number of reported con-
flicts by not including operations that commute in the current flow
table state but might not necessarily commute in all possible states.

5. IMPLEMENTATION
Our implementation of SDNRACER consists of two parts: i) an

instrumentation of STS [6], a SDN troubleshooting system and net-
work simulator, and ii) a concurrency analyzer that implements the
happens-before rules and commutativity checks.

STS and Controller Instrumentation STS contains a network
simulator that simulates switches and hosts. We extended the sim-
ulator with extra instrumentation which tracks the path that each
packet takes through each of the switches and hosts, and records
all operations that interact with the flow table. Due to having full
insight into the switch, it is possible to accurately keep track of
packet modifications that would otherwise be difficult to capture
precisely. To capture controller related happens-before we instru-
mented two mainstream OpenFlow controllers: Floodlight [7] and

POX [8]. The instrumentation includes a wrapper around the event
handler for incoming messages, and adding happens-before rela-
tions automatically whenever a message is sent, thus capturing the
order between MsgSend and MsgHandle events. Our current
approach does not capture happens-before edges introduced by ex-
plicit synchronization used inside a controller. As such, an edge
can only be added if messages are sent by the event handler itself,
and not at a later time.

Types of Controllers The approach used is sufficient for reactive
controllers using a single thread per switch connection such as the
ones used by our examples. Messages sent out by the controller
are always a direct result of handling an incoming OpenFlow mes-
sage, thus appropriate edge can be added by the instrumenation.
However, SDNRACER can not make the connection between the
messages received by the controller and the messages sent by it
for multithreaded, distributed, or proactive controllers. Thus, erro-
neous read-write conflicts are detected between each write and all
reads in the trace, although they might not represent an actual is-
sue. Still, write-write races introduced by missing barriers can still
be properly detected even for with proactive controllers. To extend
SDNRACER to completely handle all types of controllers will re-
quire extending the HB rules to fully capture what happens inside
each controller implementation, and adding further instrumentation
to capture this behaviour.

Concurrency Analyzer The analysis is performed by construct-
ing a directed graph capturing the happens-before relations from
all events in the current trace. Given the happens before graph we
check all flow table reads and writes for possible high level con-
flicts consisting of two unordered accesses to the same flow table,
one of which must be a write. For each of these high level conflict,
we use the commutativity specification to exclude pairs of opera-
tions that commute. We then report the remaining, potentially con-
currency conflicts to the user. SDNRACER runs the analysis offline
due to the fact that the STS and controller instrumentations are cur-
rently not synchronized. However, there is nothing inherent in the
analysis itself that would prevent it from running online.



6. EVALUATION
We have successfully used SDNRACER to find concurrency er-

rors in both controllers implemented in Floodlight using the exam-
ples described in §2.

Running the simulation shown in Fig. 1 (Example#1) we ob-
serve three high level concurrency violations: 10©–11©, 8©–10© and
8©–11©. Out of these three, two commute: 10©–11© commute as

the two FLOW_MOD events match disjoint set of packets, and 8©–
11© commute as the rule in 11© applies only to packets originating
from Host 1. The only concurrency violation 8©–10© which does
not commute is reported to the user and it describes exactly the
harmful scenario in which the switch receives the packet before
it installs the FLOW_MOD 10©. Fixing the controller by inserting a
BARRIER_REQUEST after the two FLOW_MOD messages reduces the
number of high level concurrency violations to a single one (be-
tween the two FLOW_MOD messages) which commutes, thus SD-
NRACER ceases to report violations.

Similarly for the Example#2 we report only a single concurrency
violation between events 6© and 8©, corresponding to packet and
FLOW_MOD message hitting the S2 respectively. It should be noted
that thanks to the happens-before model SDNRACER was able to
discover these concurrency errors despite the fact that both exam-
ples were tested on traces which did not exhibit the harmful sce-
nario (e.g., the FLOW_MOD message was processed before the data
plane packet arrived).

7. RELATED WORK
Several research projects aimed at verifying correctness of SDN

networks: HSA [9, 10] and Libra [11] take snapshots of the net-
work forwarding state and check if they violate certain properties.
Like SDNRACER, these tools can detect interesting invariant vio-
lations. However, they cannot tell what precise sequence of events
led to them. STS [6] extended these works by also considering
the events that caused the controller to trigger invariant violations.
Unlike SDNRACER, STS does not have a precise formal specifica-
tions of the partial orderings between events or the conditions under
which two operations commute. As a result it cannot detect bugs
unless the invariant is actually violated in the given trace.

Several approaches seek to eliminate the possibility of bugs al-
together, by synthesizing controllers that can be proven to be cor-
rect: Machine verified controllers [12] can be proven to correctly
implement the network behaviour specified by policies written in
NetCore [13]. A similar approach is taken by FlowLog [14],
where rulesets are partially compiled to NetCore policies and then
verified. Instead of verifying the controller, VeriFlow [15] and
Anteater [16] set a middle layer between the controller and the
data-plane to make sure that no invariant is violated at runtime.
An extension [17] of VeriFlow allows using assertions to check
network properties during controller execution.

A different approach to the verification problem is taken by tools
such as NICE [18], Kuai [19] and Vericon [20]. NICE [18] uses
concolic execution of Python controller programs with symbolic
packets and then runs a model checker to determine invariant vi-
olations. A simplified model is used for the OpenFlow switch in
order to reduce the number of states that need to be explored. The
Kuai [19] checker similarly uses a simplified version of an Open-
Flow switch as well as a custom controller language, but then ap-
plies partial order reduction techniques to reduce the number of
states the model checker has to explore. Although performance is
significantly improved, it still suffers from the state-space explo-
sion problem associated with full model checking. Vericon [20]
converts programs into first-order logic formulas and uses a theo-

rem prover to verify safety properties. One interesting aspect is that
Vericon can prove that the invariants hold under network topologies
of any size, without having to explicitely test each topology. In
contrast, SDNRACER is a dynamic analyzer that operates on con-
crete traces of real controllers and can quickly detect concurrency
issues, the root cause of many bugs. The speed of the analysis is
independent of controller size and only depends on the size of the
trace, which is important when analyzing real-world controllers.
The approaches above could benefit from our formal specifications
in order to speed-up their verification time (e.g., by not checking
operations that do not interfere with the current network state).

8. CONCLUSION
In this paper, we introduced the first happens-before relation for

Software Defined Networks capturing ordering between concurrent
events. We also introduced a commutativity specification of the
switch enabling precise analysis of the network.

Based on these two ingredients, we developed SDNRACER, the
first dynamic analyzer able to detect violations occurring between
an SDN controller and the underlying network switches. Our first
prototype of SDNRACER is promising: it is able to detect races
in real-world SDN applications, including harmful ones capable of
causing anomalies such as loss of reachability.

In future work we plan to: i) extend state aware commutativity
checks to other operations, ii) perform more complex analysis of
the controller to add happens-before orderings beyond the currently
supported reactive mode, and iii) explore stateless model checking
to ensure better coverage.
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