
Safe Routing Reconfigurations with Route

Redistribution

Stefano Vissicchio∗, Laurent Vanbever†, Luca Cittadini‡, Geoffrey G. Xie§, Olivier Bonaventure∗

∗Université catholique de Louvain, †Princeton University, ‡RomaTre University, §Naval Postgraduate School

Abstract—Simultaneously providing flexibility, evolvability
and correctness of routing is one of the basic and still unsolved
problems in networking. Route redistribution provides a tool,
used in many enterprise networks, to either partition a network
into multiple routing domains or merge previously independent
networks. However, no general technique exists for changing a live
network’s route redistribution configuration without incurring
packet losses and service disruptions.

In this paper, we study the problem of how to safely transition
between route redistribution configurations. We investigate what
anomalies may occur in the reconfiguration process, showing
that many long-lasting forwarding loops can and do occur if
naive techniques are applied. We devise new sufficient conditions
for anomaly-free reconfigurations, and we leverage them to
build provably safe and practical reconfiguration procedures.
Our procedures enable seamless network re-organizations to
accomplish both short-term objectives, such as local repair or
traffic engineering, and long-term requirement changes.

I. INTRODUCTION

Most networking textbooks explain the classical intrado-
main routing protocols, i.e., IGPs (RIP, OSPF, EIGRP, ISIS,
. . .) and mention that each enterprise can select one as its
preferred routing protocol. However, routing in enterprise
networks is much more complex than that [1], [2]. In many
enterprise networks, several intradomain routing protocols
have to coexist. This coexistence can be due to several business
reasons, e.g., company mergers and acquisitions, or pragmatic
reasons, e.g., a specific routing protocol not being supported
on routers from a given vendor. To allow different intradomain
routing protocols to coexist, network administrators depend on
route redistribution (RR). With RR, a router that participates in
in several routing protocols can selectively pass routes between
the different protocol instances. Although BGP could also be
used for this purpose, enterprise network administrators often
prefer RR because it supports additional functionality such as
efficient routing and domain backup [3].

A network using RR to connect multiple intradomain
routing protocols is said to be partitioned into several routing
domains. A routing domain (RD) is a connected subgraph
of the network that is composed of routers that use the
same intradomain routing protocol. Many enterprise networks
are divided in routing domains [3]. Using multiple routing
domains has several advantages. For example, routing domains
can act as administrative boundaries, where different teams
separately manage different portions of the network. Moreover,

Stefano Vissicchio is a postdoctoral researcher of the Belgian fund for
scientific research (F.R.S.-FNRS)

operators can combine the advantages of different routing
protocols (or different configuration modes), e.g., optimizing
one RD for scalability and another for fine-grained traffic
engineering.

The division of an enterprise network in routing domains
is not static. Various events can force an enterprise network
operator to change the boundaries of its routing domains.
Splitting and merging networks, e.g., to accommodate mergers
and acquisitions, are two radical examples. Simply replacing
a router by another router from a different brand may also
force a boundary modification. Finally, the events can be
driven by short-term objectives such as a change to the traffic
engineering requirements or router maintenance, as well as
long-term redesigns such as transitioning part of the network
to the new software defined networking (SDN) paradigm.

Reconfiguring an enterprise network divided in several
routing domains is challenging. Firstly, route redistribution is
prone to routing and forwarding anomalies [3], and designing
a correct RR configuration is known to be hard [4], [5].
Secondly, the coexistence of multiple routing domains exac-
erbates the difficulty of routing reconfiguration. Indeed, while
even reconfiguring a single routing protocol can incur routing
and forwarding anomalies [6], the presence of RR forces
operators to also navigate the intricate interactions between
different routing protocols that exchange routes. Unfortunately,
operators currently have no methodological support nor tool
that help them safely transition between route redistribution
configurations. In this paper, we address these challenges by
considering the following question: Given a network using
multiple routing domains and route redistribution, how can we
reconfigure routing without triggering persistent anomalies?

We focus on persistent routing and forwarding anomalies,
i.e., those caused by the reconfiguration process and can only
be solved with a configuration change. These long lasting
anomalies are much more harmful than transient anomalies
that may occur during protocol convergence. We assume that
an IGP is the only routing protocol configured in each routing
domain. This assumption matches the typical configuration of
enterprise networks on which we focus, and avoids anomalies
due to a more complex protocol stack [?].

This paper is organized as follows. We present the problem
of reconfiguring a network with multiple routing domains, and
show that persistent anomalies can and do occur during this
process in Sec. II. We explain why the presence of multiple
routing domains invalidates most of the assumptions made in
some previous research in Sec. III. We propose new sufficient
conditions for loop-free route redistribution configurations that

are general enough to apply during a reconfiguration process
in Sec. IV. Using the new sufficient conditions as a basis, we
describe procedures to arbitrarily reconfigure networks with
multiple routing domains while guaranteeing the absence of
anomalies in Sec. V. Finally, we show the practicality of our
procedures through a realistic reconfiguration where a single
routing domain is split in two in Sec. VI.

II. RECONFIGURATIONS WITH ROUTE REDISTRIBUTION

In this section, we introduce the problem of changing the
routing configuration of an enterprise network with multiple
RDs, and we evaluate its practical impact.

A. Problem Overview

The operational community has produced a number of
best practices for reconfigurations (e.g., [7], [8]). However,
their scope is restricted to very specific use cases and do
not guarantee routing safety during the reconfiguration. The
problem of disruption-free routing reconfiguration has recently
been studied in various contexts, including adjusting IGP link
weights [9], changing the IP topology [10], migrating virtual
routers [11], [12], reconfiguring an IGP [6] or a BGP [?]
network, and updating SDN switches [13]. All these efforts,
however, consider networks with a single routing domain. Con-
currently, research work [14], [15], [16] has introduced models
for studying networks with multiple routing protocols, and
sufficient conditions for safe route redistribution configuration.
These results do not address the question of how to safely
change a route redistribution configuration.

We build upon the algorithmic techniques proposed by
Vanbever et al. in [6] to update the routing configuration with-
out causing anomalies. We reconfigure routing in a network
in a discrete number of steps. At each step, a single router
is reconfigured and then a given time is waited for routing
convergence. The configuration of a router can be changed in
a limited number of ways, namely, by adding/removing the
support of a specific routing instance, changing the adminis-
trative distance value of a given routing instance, and activat-
ing/deactivating route redistribution. A router is reconfigured
when it runs with its final configuration. A reconfiguration is
completed when all the routers are reconfigured.

Reconfiguring a network router-by-router can incur persis-
tent anomalies during reconfiguration even when the initial and
the final configurations are anomaly-free, because of inconsis-
tent protocol preferences across different routers. We refer to
those anomalies as reconfiguration anomalies. Previous work
[6] showed that reconfiguration anomalies can be prevented in
single-domain networks by reconfiguring the routers in a well-
chosen ordering. Unfortunately, when route redistribution is
enabled, existing techniques are not guaranteed to be correct
anymore, since new anomalies can result from the interplay
between different routing protocols and route redistribution.
Route redistribution is informally defined as the process of
receiving a route from one routing domain, discarding all
its protocol- and routing domain-specific information, and
announcing it in another routing domain with a new set of
attributes (e.g., a new metric) [3].

r1

d

y r2

x

1

1

5

50

1

R1

R2

R3

Fig. 1. A forwarding loop during a routing domain splitting reconfiguration.

As an example, Fig. 1 shows a forwarding loop occurring
during a RD splitting reconfiguration. The graphic convention
in the figure is used throughout the paper. Routers are repre-
sented by solid circles, and routing domains are represented
by dashed curves. Routers at the border between two routing
domains are contained in a shaded box. Solid lines represent
links between routers and are annotated with the corresponding
link weight. Each figure depicts a specific reconfiguration step.
To represent the progress of the reconfiguration, we use thicker
lines for routers that have already been reconfigured.

In the example in Fig. 1, routing domain R3 is being
split in two RDs R1 and R2. In the initial configuration,
only R3 exists, i.e., all routers in the network run a single
protocol p3. The final configuration has two RDs, R1 and R2,
connected via route redistribution. Routing protocols p1 and
p2 are respectively run in R1 and R2. Routers r1 and r2 run
both p1 and p2, and redistribute routes from R2 to R1. Hence,
x and y receive two redistributed routes to d, one from r1 and
the other from r2. Assuming that the same metric is applied to
routes redistributed by both r1 and r2, then x and y forward
traffic towards d via r1, since r1 is the closest between r1 and
r2 according to the link weights set in R1. Hence, both the
initial and the final configurations are anomaly-free.

The figure shows a snapshot of an intermediate reconfigu-
ration step where r1, r2 and y are reconfigured while x is not.
Note that there is a persistent forwarding loop. Since r1 and
r2 are reconfigured, they redistribute routes from R2 to R1.
Moreover, since y is reconfigured, y selects as best the route
redistributed by r1, represented by the solid arrows in Fig. 1,
hence it forwards traffic to d via x. However, x is still in its
initial configuration, and uses the route provided by p3 (dashed
arrows in Fig. 1) hence forwarding the traffic to d back to y.

B. Experimental Analysis

To assess the likelihood that anomalies occur during re-
configurations of networks with multiple RDs, we simulate a
routing domain splitting on the Geant and Rocketfuel topolo-
gies, which are publicly available [17], [18].

For each topology, we assume the initial configuration to be
a single routing domain, and we build the final configuration
as follows. First, we randomly select a connected component
composed of half of the routers in the topology. We con-
sider this connected component as one routing domain. Then,
we remove this routing domain and we map the remaining
connected components to other routing domains. We perform
the reconfiguration one RD at a time. Within one routing

1 5 10 50 100 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

number of loops

C
C

D
F

1221

1239

1755

3257

3967

6461

geant

(a)

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

duration of loops (percentage of reconfiguration time)

C
C

D
F

1221

1239

1755

3257

3967

6461

geant

(b)

Fig. 2. Even in small topologies, a large number (left) of long-lasting (right) forwarding loops can appear when splitting a routing domain. Even worse, the
number and the duration of the forwarding loops grow with the size of the network.

domain, we compute the order of router reconfigurations as
a random permutation. For each topology, we choose 30
different random orderings to ensure statistical significance.
Those simulations are intended to mimic the case in which
route redistribution is activated first and then routing domains
are reconfigured one by one.

Fig. 2 reports the results of the experiments just described.
Although our reconfiguration does not modify link weights,
we observe a sheer number of long-lasting reconfiguration
loops. In particular, Fig. 2(a) and 2(b) respectively report
the Cumulative Distribution Functions (CDFs) of the number
and of the duration of forwarding loops. Even in a small
network like Geant (35 routers), up to 31 loops occur dur-
ing the reconfiguration exclusively because of the activation
of route redistribution, with a median around 20 loops per
experiment. In addition of being numerous, many loops are
also long-lasting. In median, a loop lasts for about 15% of the
reconfiguration process, while some loops span about 50% of
the reconfiguration. As expected, the number and the duration
of loops grow with the size of the network. In Rocketfuel
topologies, between 100 and more than 500 loops are raised
in the worst case. Even worse, loops also last longer in
Rocketfuel topologies, with peaks reaching more than 80% of
the reconfiguration process. Depending on the network size,
those results imply that reconfiguration loops can last in real
networks from minutes to hours, even if the reconfiguration of
a single router only takes few seconds.

III. LIMITATIONS OF EXISTING THEORY

We now show that the presence of route redistribution
makes the safe reconfiguration problem much harder.

A. Background and Notation

Routers exchange messages and take decisions on two
different levels: the data-plane and the control-plane.

The data-plane level is typically implemented in hardware
and is used by a router to efficiently forward packets. Data-
plane decisions are based on the Forwarding Information Base

(FIB), a data structure that, for each destination, specifies the
outgoing interface and the next-hop. The FIB may contain
multiple next-hops for the same destination, e.g., in case of
Equal Cost Multi-Path (ECMP). In the following, we denote
with fib(r, d, t) the set of next-hops of router r at time t
for packets to destination d, as stored in the FIB of r. The
forwarding paths that are actually followed by data packets are
the result of the concatenation of FIB entries of a sequence
of routers. More formally, we define the forwarding paths
followed by packets originated by s and destined to d at time
t as the set π(s, d, t) of all the sequences of routers of the
form (v0 . . . vk), where k ≥ 0, v0 = s, and ∀i = 0, . . . , k − 1
vi+1 ∈ fib(vi, d, t).

FIBs are computed by routers on the basis of information
exchanged by routers on the control-plane (implemented in
software). In particular, routers run routing protocols to agree
on the forwarding paths to be used. A routing protocol
defines the format of messages and the algorithms to select
and distribute routes, i.e., forwarding paths available in the
network. In the following, we focus on commonly used link-
state routing protocols such as IS-IS and OSPF. Basically, link-
state protocols are designed to make all routers aware of the
network topology. Each router locally computes its best routes
relying on some variant of Dijkstra’s algorithm.

Routers can run several routing protocols at the same time.
In this case, each router instantiates a separate routing process
for each routing protocol. In the following we refer to a routing
process running on a set of routers as routing instance, or
simply instance. To solve conflicts in the computation of the
FIB, the Administrative Distance (AD) establishes a relative
preference between routing instances running on the same
router. Lower AD values correspond to higher preference.
Each routing protocol is normally assigned a default AD value
(e.g., 110 for OSPF, 115 for IS-IS, and 1 for static routes on
Cisco routers). However, network operators can fine-tune AD
values even on a per-destination basis. To simplify the notation,
we denote the AD value assigned to a routing instance p
as AD(p), and we separately specify routers, destinations

and time at which this AD setting applies. We refer to the
instance with the lowest AD on r at time t for destination d
as pref(r, d, t). For each destination d, each router r selects
the best route to d according to instance pref(r, d, t). Then,
it stores its best routes in a data structure called Routing
Information Base (RIB). Each RIB entry rib(r, d, t) contains
information on the forwarding paths π(r, d, t) that would be
followed if pref(r, d, t) were the only routing instance in
the network. The FIB is then derived as a subset of the
information in the RIB. In particular, fib(r, d, t) contains
the first hop in rib(r, d, t). However, since different AD
settings can be configured on different routers, we can have
π(r, d, t) 6= rib(r, d, t).

We formally define a routing domain (RD) as the set of all
routers that can exchange routing information using the same
routing instance. We distinguish between frontier and internal
routers. For each RD R, a router r ∈ R is a frontier router
if it has at least one neighbor x 6∈ R. Otherwise, r is called
internal to R. We refer to the routing instance running in RD
R as proto(R).

In a network divided in several routing domains, desti-
nations can be announced in one or more RDs, with route
redistribution responsible for propagating a route in the re-
maining RDs. Observe that some destinations (e.g., loopback
interfaces) are typically announced in a single RD, while others
(e.g., LANs attached to routers belonging to different routing
domains, or a default route) can be announced in several RDs.
We define origin routing domain of a destination d as the set
of disjoint RDs in which d is originated.

B. Known Sufficient Conditions Cannot be Preserved in the
Reconfiguration

Route redistribution can cause routing and forwarding
anomalies even in a static configuration [3]. In order to focus
on anomalies due to the reconfiguration process, we assume
that the initial and final configurations are provably anomaly-
free, i.e., comply with the following assumptions.

Assumption 1 (Strict Monotonicity): The AD value of a
route always increases when it is redistributed, and never
decreases when it is propagated inside a RD.

Assumption 2 (Network-Wide Protocol Preference): The
AD of each routing instance is consistent across all routers in
the instance and is not assigned to any other instance.

Assumption 1 guarantees the absence of routing anoma-
lies [4], while Assumption 2 ensures the absence of forwarding
anomalies due to inconsistent route selection [5].

Observe that the forwarding loop in the example of Fig. 1
occurs even if the initial and final configurations are compliant
with those assumptions. Even worse, the presence of route
redistribution invalidates existing reconfiguration techniques
that are provably correct for networks with a single RD.

Consider Fig. 3 and assume that the goal of the recon-
figuration is to change the weight of link (x, y) from 1 to
50 and the weight of link (x, r2) from 50 to 20. We use the
IGP reconfiguration technique defined in [6], which introduces

y
r2

x

1
R1

R2d

r1

50 → 20

10
10

v

u

1

1

1

5

1 → 50
10

fib(r2, d, 0)

rib(r1, d, t2)

LEGEND

pref(r1, d, f) = proto(R2)

pref(r2, d, f) = proto(R1)

fib(y, d, f)

Fig. 3. Reconfiguration techniques which are lossless on a single RD can
create forwarding loops in a multi-RD network.

the new configuration in a new routing instance which has
an AD value higher than the existing routing instance. The
AD of the new instance is then changed on a per-router basis
to make it preferred over the old one. Let p1 and p̄1 be the
old and the new routing instances in R1, respectively, and let
p2 = proto(R2). Immediately after having introduced p̄1, we
have AD(p1) < AD(p2) < AD(p̄1) network-wide. We then
increase the AD value of the old routing instance on one router
at the time, until we have AD(p2) < AD(p̄1) < AD(p1) on
all the routers in the network. Provided that Assumption 1
holds, both the initial and final configurations are compliant
with known sufficient conditions that ensure their correctness.

Observe that, as a side effect of the reconfiguration in
R1, the relative preference of R1 and R2 is inverted. The
technique in [6] does not take the presence of R2 into account,
yielding to possible anomalies in intermediate configurations.
For example, according to [6], we can start by reconfiguring
routers r1 and y, as shown in Fig. 3. Consider now destination
d, which is announced in routing domains R1 and R2. To
reach destination d, router r1 uses p2 whereas other frontier
routers still use p1. Moreover, as the weight of link (x, y) is
changed in p̄1, router y uses r1 as its next-hop, which causes
a loop to occur involving routers y, r1, v, and r2.

Similar examples can be shown where the forwarding
loops affect destinations with multiple origin RDs (e.g., de-
fault routes). Intuitively, forwarding loops appear because As-
sumption 2 is intrinsically incompatible with reconfiguration
techniques that change AD values on a per-router basis.

C. Generalization of Existing Techniques is not Easy

Ideally, we would like to adapt existing techniques for
single-RD reconfigurations to account for route redistribution.
In particular, the IGP reconfiguration technique defined in [6]
only relies on FIB entries. Hence, it might be tempting to
simply adapt it to multi-RD reconfigurations. Unfortunately,
this is not straightforward.

First of all, there is a mismatch in the model and in
the problem statement. In particular, in single-RD reconfig-
urations, reconfiguring a router can be considered an atomic
operation that can be achieved by tweaking the AD value.
With RR, we have at least an additional reconfiguration step to
consider : activating or deactivating route redistribution. While
AD influences what the routers select, RR influences what the
routers announce, which might in turn influence the routing
decisions of other routers. This distinction does not exist in
reconfigurations within a single RD.

y
r3

x
1

R1

R2

R3

r1

r2
5

10

d

10

1

50

π(y, d, 0)

π(y, d, f)

LEGEND

pref(r1, d, f) = proto(R2)

pref(r2, d, f) = proto(R2)

1

rib(x, d, t2)

pref(r3, d, f) = proto(R2)

Fig. 4. Route redistribution can induce forwarding loops even when any
combination of initial and final nexthops is loop-free.

More importantly, RR invalidates some fundamental prop-
erties that make single-RD reconfigurations possible. For ex-
ample, the IGP reconfiguration technique defined in [6] is
based on the property that a router is reconfigured if and only if
it is using its final nexthops to any destination. RR invalidates
this assumption because it can cause reconfigured routers to
select nexthops that are not the final ones.

Consider Fig. 4, where RD R3 has to be split in R1 and
R2 connected with RR. Assume that the initial and the final
configurations comply with Assumptions 1 and 2. In the initial
configuration, the shortest path from router y to destination d is
(y x r2 d). In the final configuration, routers inside R1 are not
aware of link weights inside R2 and use a redistributed route
to reach d. Therefore, each router selects the shortest path to
the closest frontier router, e.g., router x uses r1 as its next-hop.
Observe that the next-hop of router y is x both in the initial and
in the final configurations. For this reason, the technique in [6]
would mistakenly assume that there is no ordering constraint
between routers x and y. However, Fig. 4 shows that, if router
r3 has been reconfigured, then we cannot reconfigure router x
before router y. In fact, router r3 uses the routing instance in
R2 to reach destination d and redistributes the route in R1.
When router r3 starts redistributing the route in R1, there is
no other route towards destination d in R1. Hence, router x
starts using y as its next-hop towards destination d, whereas
router y keeps using x as next-hop since y still uses R3. The
key observation here is that, despite the fact that router x has
been reconfigured, it is not using its final nexthops.

IV. NEW SUFFICIENT CONDITIONS FOR LOOP-FREE

ROUTE REDISTRIBUTION

We know from Sec. III-B that reconfigurations in multiple
RDs can violate Assumption 2. Moreover, in intermediate
routing configurations multiple routing instances could be
configured in the same domain, and RDs might be nested.

To enable anomaly-free reconfigurations, we propose new
sets of conditions both for disjoint (Section IV-A) and nested
RDs (Section IV-B), that can replace Assumption 2.

A. Sufficient Conditions for Disjoint Routing Domains

We say that RDs are disjoint if frontier routers are the only
routers belonging to more than one RD, as in the example in
Fig. 3. Let Assumption 1 hold. We now replace Assumption 2
with the following conditions. We refer to a set of contiguous
AD values as AD interval.

Condition 1 (Network-Wide Domain Preference): Each
RD R is assigned a globally unique AD interval interval(R).
Each router sets the AD value of any routing instance p
running in R to a value AD(p) ∈ interval(R). Routes
redistributed in R are assigned an AD higher than the highest
value in interval(R).

Condition 2 (Absence of Internal Loops): Forwarding
paths internal to every RD do not contain loops.

Condition 1 is a relaxation of Assumption 2 in that it
imposes a partial (rather than total) order on the AD values of
routing instances. This relaxation requires adding Condition 2
on the forwarding paths internal to single domains.

Theorem 1: If Assumption 1 and Conditions 1 and 2 hold,
the configuration is free from anomalies.

Proof: Assumption 1 ensures the absence of routing
anomalies [4]. We now focus on forwarding loops. Let d be
any destination, and let O1, . . . ,Ok, with k ≥ 1, be the origin
RDs of d. Consider any time t after routing convergence and
assume by contradiction that a forwarding loop L exists.

Since RDs are disjoint and Condition 2 holds, a loop cannot
occur within a single RD. Hence, L must contain a sequence
of frontier routers (f1 . . . fk) such that: i) each pair (fi, fi+1)
belongs to a common RD Ri; and ii) fi+1 prefers the path
in another routing domain Ri+1 over the path in Ri, where
subscripts are intended modulo k. For each pair (fi, fi+1),
with i = 1, . . . , k − 1, Condition 1 ensures that AD values
in interval(Ri) are greater than those in interval(Ri+1).
We write interval(Ri) > interval(Ri+1). By definition
of L, we then have interval(Ri) > interval(Ri+1) >
· · · > interval(Ri+k−1) > interval(Ri), that contradicts
Condition 1.

B. Sufficient Conditions for Nested Routing Domains

We now consider the case in which i) we have nested
RDs, i.e., some routers belong to more than one routing
domain; ii) a single routing instance spans each RD; and iii) no
route redistribution is configured between nested RDs. Observe
that two routing domains cannot be partially overlapping:
either one RD is a subset of the other (i.e., nested routing
domains), or the two RDs are disjoint. These cases match the
examples in Fig. 1 and Fig. 4, respectively. When dealing with
nested domains, the notion of origin RD of a destination d
is ambiguous because destination d could belong to multiple
nested routing domains. We redefine the concept of origin RD
for a destination d as follows. Let x be a router announcing
d in multiple RDs. Then, each of the smallest disjoint routing
domains in which router x announces destination d is an origin
RD of d. For example, in Fig. 1, routing domain R2 is an
origin RD of d, while R3 is not.

We now present sufficient conditions for this setting. Let
Assumption 1 hold and let us replace Assumption 2 with the
following conditions.

Condition 3 (Local Scope Preference): A router belong-
ing to multiple nested RDs prefers the innermost RD.

Condition 4 (Limited Frontier Traversal): Let R be any
RD and let r be any frontier router in R. In all the routing
instances used by at least one router in R, the shortest path
from r to any router in R must only include routers internal
to R.

Intuitively, Condition 3 induces a hierarchical preference
of routing instances which derives from the hierarchy of RDs.
Condition 4 states that at most one frontier router can be
traversed in any forwarding path from a source to a destination
in the same RD.

Theorem 2: If Assumption 1 and Conditions 3 and 4 hold,
the configuration is free from anomalies.

Proof: The absence of routing anomalies is guaranteed by
Assumption 1 [4]. Consider any destination d, and any time t
after routing convergence. We now show that the forwarding
paths from every r ∈ R to d contains no loop.

If R is an origin routing domain and rib(r, d, t) includes
only internal routers and frontier routers preferring the in-
stance running in R, then Condition 3 guarantees π(r, d, t) =
rib(r, d, t). By definition of RIB, this implies the absence of
forwarding loops.

Otherwise, let f be the first frontier router (in order of
appearance) in rib(r, d, t) such that f prefers an instance
running in a RD other than R. Also, let o be a frontier
router preferring an instance in an origin RD for d. Then,
π(r, d, t) can be written as the concatenation of three sub-
paths P = (r . . . f), Q = (f . . . o) and R = (o . . . d), possibly
with P empty (if f = r) or Q empty (if f = o). P and R
are paths internal to a single RD, hence they are loop-free by
Condition 3. Consider now Q. If Q 6= ∅, then f uses a route
R̄ in a RD Rf , redistributed by another frontier router f1.
By Condition 4, no frontier routers other than f and f1 are
present in R̄, i.e., R̄ is internal to Rf . By Condition 3, no
loop can occur in Rf , hence f1 is eventually reached. Since
Assumption 1 prevents any RD from being traversed twice,
the same argument can be iterated until o is reached, proving
that Q is loop-free. Since P , Q, and R contain no loops, then
π(r, d, t) is loop-free.

C. Enforcing the Sufficient Conditions in Practice

The conditions described in Sections IV-A and IV-B can
be enforced by conveniently tweaking router configurations.

Different AD intervals can be assigned to each RD, as
in Condition 1, by carefully configuring the AD of routing
instances on all the routers. In order to ensure that redistributed
routes have AD values higher than the highest AD in each RD,
redistributed routes can be tagged by the router. Other routers
can then apply the correct AD value based on the presence
of tags (e.g., using route maps). While tags and route maps
complicate router configurations, we argue that very similar
mechanisms are needed to enforce Assumption 1 [14], and are
already applied in some networks [3] to prevent cyclic route
redistribution. Moreover, some protocols have specific features
meant to natively distinguish redistributed routes (e.g., OSPF
external routes).

Condition 2 always holds in the presence of a single routing
instance per RD. If multiple instances are present in the same
RD, a very simple way to comply with Condition 2 is to make
sure that, for each destination, a single instance is the most
preferred by all routers in the RD.

Condition 3 can be ensured by careful AD settings.

Finally, Condition 4 imposes constraints on shortest paths
as computed by routing instances used inside each RD. Hence,
it imposes restrictions on the internal weights and topologies
of RDs. Realistic configurations following best practices in
network design are likely to comply with such restrictions.
For example, in hierarchical topologies like those commonly
used in data centers [19] and in Point-of-Presences [20], a
frontier can be placed at each level of the hierarchy. More
in general, a routing domain R can be configured to comply
with Condition 4 by i) setting the weight of the links incident
on frontier routers to a value greater than the highest weight
of links internal to R; and ii) setting the weight of links (if
any) between x ∈ R and y 6∈ R to a value greater than any
other link weight in the network (including links incident on
frontier routers) so that no shortest path can possibly traverse
those links.

V. LOOP-FREE RECONFIGURATIONS

In this section, we propose safe procedures to reconfigure
multi-RD networks. We assume that the initial and final
configurations include only disjoint RDs, as it is typically the
case [3]. However, nested routing domains can appear during
a reconfiguration. Sections V-A and V-B address reconfigura-
tions in single-RD and multi-RD networks, respectively.

A. Revisiting Single-RD Techniques

We have shown how existing techniques are hard to adapt
to multi-RD networks, even when the reconfiguration affects
a single-RD (see, e.g., the example reported in Fig. 3). We
now revisit those techniques, restricting to those that provably
guarantee the absence of anomalies in networks with a single
RD. We distinguish between AD-preserving and AD-changing
techniques.

AD-preserving techniques ensure that the AD of all routing
instances is left untouched throughout the reconfiguration.
Hence, if the initial and final configurations comply with
Assumptions 1 and 2, AD-preserving techniques guarantee that
any intermediate configuration also complies with those as-
sumptions. Previous results [4], [5] then ensure the absence of
routing and forwarding anomalies during the reconfiguration.

Unfortunately, not all AD-preserving techniques are appli-
cable on today’s routers (e.g., [21], [22], [23], [24]). Others [9],
[25], [26] can only be used in a limited set of reconfiguration
scenarios, i.e., link weight changes. AD-preserving techniques
cannot be used to introduce or remove routing hierarchies,
to activate or deactivate protocol-specific features (like route
summarization), or to introduce new routing instances. The
latter limitation also prevents them from being applied in

Single-RD Reconfiguration Procedure
Let R be the RDto be reconfigured. Let pi and pf be the rout-
ing instances running the initial and the final configurations,
respectively.

1) force the interval of AD values assigned to R to include
[AD(pi)− 1, AD(pi) + 1].

2) introduce pf with AD(pf) = AD(pi) + 1 on all the
routers in R (in any order).

3) set AD(pf) = AD(pi) − 1 on every router in R

following an ordering computed as in [6].
4) remove pi from each router in R (in any order).

Fig. 5. A provably correct procedure for single-RD reconfigurations.

reconfigurations involving splitting, merging or reshaping rout-
ing domains.

AD-changing techniques, on the contrary, modify AD val-
ues progressively in the network. The new configuration is
introduced as a new routing instance and the AD values are
progressively changed in order to activate the new instance.
By relying on route tags and route-maps, as described in
Section IV-C, Assumption 1 can be preserved during the
entire reconfiguration process. Unfortunately, Assumption 2
cannot be enforced. However, we can adapt those techniques to
make them compliant with Conditions 1 and 2 throughout the
reconfiguration process. In particular, we focus on the seamless
IGP reconfiguration technique defined in [6].

Let R be the routing domain to be reconfigured, and let
pi and pf be the routing instances respectively running the
initial and the final configurations on routers in R. In every
intermediate configuration, Condition 2 is guaranteed on any
routing domain Ri 6= R because the initial configuration
is anomaly-free and the configuration of routers in Ri is
never changed. Moreover, the reconfiguration technique in [6]
guarantees no reconfiguration loop when applied to a single-
RD network, so Condition 2 also holds for R.

On the contrary, the technique in [6] is not guaranteed to
preserve Condition 1. In fact, when introducing pf with an
AD value which is higher than the one assigned to pi, the
AD value of pf could violate Condition 1. For example, if
AD(pi) = max(interval(R)), then we cannot assign to pf
an AD value in interval(R) higher than pi. Luckily, as long
as there is at least one unused AD value, it is always possible
to rearrange the AD intervals, and make an arbitrary AD value
unused. In fact, the AD value of a routing instance can always
be increased by one without invalidating Assumption 1 and
Conditions 1 and 2, if the new value was previously unused.

Fig. 5 shows an extension of the technique in [6] that
preserves Condition 1 in each intermediate configuration, by

• using AD(pi)+1 and AD(pi)−1 as the initial and final
AD for pf , respectively; and

• rearranging the AD intervals in a preliminary step to
make AD(pi) + 1 and AD(pi) − 1 available before the
reconfiguration.

Theorem 3: The Single-RD Reconfiguration Procedure in
Fig. 5 does not incur reconfiguration anomalies.

Routing Domain Splitting Procedure
Let RU be a routing domain to be split in two routing domains
R1 and R2. Let pu, p1 and p2 be the routing instances running
in RU , R1 and R2, respectively.

1) (if needed) enforce Assumption 1 by tagging redis-
tributed routes and adding convenient route maps.

2) (if needed) reconfigure RU to enforce Condition 4 on
R1 and R2.

a) compute new weights to be applied to pu, p1, and p2
(see Section IV-C)

b) change weights in pu using the procedure in Fig. 5

3) reconfigure routers in R1 to prefer p1 using the proce-
dure in Fig. 5

4) reconfigure routers in R2 to prefer p2 using the proce-
dure in Fig. 5

5) activate route redistribution from and to R1 and R2.
Redistributed routes have lower AD than pu.

6) remove pu on all the routers in RU (in any order).

Fig. 6. Provably correct procedure for routing domain splitting scenarios.

Proof: Assumption 1 holds in the initial configuration and
is never invalidated during the reconfiguration. Moreover, the
procedure ensures that all intermediate configurations comply
with Conditions 1 and 2. Theorem 1 completes the proof.

B. Safe Procedures for Multi-RD Reconfigurations

We now consider reconfigurations that change the orga-
nization of the network in RDs. We focus on RD splitting
and merging reconfigurations. Any other re-organization of
routing domains can be performed by combining splitting and
merging.

Fig. 6 describes the procedure that we propose to split an
RD RU in two RDs R1 and R2. For the sake of simplicity, we
assume that only one routing instance, in a flat configuration
mode, is run in each routing domain. The procedure consists in
three main phases. In the first phase, we enforce Assumption 1
by using tags and route-maps. In the second phase, routers in
future RDs R1 and R2 are reconfigured in order to enforce
Conditions 3 and 4. In Step 2, Condition 4 is imposed on RU

with the single-RD reconfiguration discussed in the previous
section (note that routing domains R1 and R2 do not exist
yet). Then, in Steps 3 and 4, we progressively introduce the
routing instances that will run in RD R1 and R2. Finally, the
third phase activates route redistribution on frontier routers.

Intuitively, the procedure preserves Assumption 1 through-
out the process. Conditions 1 and 2 hold in the second phase,
and Conditions 3 and 4 are preserved in the third phase. This
makes the procedure provably free from anomalies.

Theorem 4: The procedure in Fig. 6 does not incur recon-
figuration anomalies.

Proof: Assumptions 1 and 2 hold at Step 1 as they hold
in the initial configuration by hypothesis. This guarantees
the absence of anomalies [4], [5]. Moreover, this first step
enforces Assumption 1 in each intermediate configuration,
independently from AD settings.

Routing Domain Merging Procedure
Let R1 and R2 be two RDs to be merged in RU . Let pu, p1
and p2 be the routing instances running in RU , R1 and R2,
respectively.

1) (if needed) enforce Assumption 1 by tagging redis-
tributed routes and adding convenient route maps.

2) (if needed) reconfigure R1 and R2 to enforce Condi-
tion 4.

a) compute new link weights compliant with Condition 4
(see Section IV-C)

b) apply the procedure in Fig. 5 on R1 and R2

3) configure pu on all the routers in RU , with an AD higher
than every route (either redistributed or non-redistributed)
in both R1 and R2

4) de-activate route redistribution from and to R1 and R2.
5) reconfigure routers in R1 to prefer pu using the proce-

dure in Fig. 5.
6) reconfigure routers in R2 to prefer pu using the proce-

dure in Fig. 5.
7) remove p1 and p2 on all the routers in RU (in any order).

Fig. 7. Provably correct procedure for routing domain merging scenarios.

In Step 2, we still have a single RD RU . Since this step is
carried out using the procedure in Fig. 5, Theorem 3 guarantees
the absence of reconfiguration anomalies.

Step 3 is a reconfiguration of nested RDs. However, route
redistribution between R1 and R2 is not activated yet. More-
over, since the link weights are the same in both instances,
each router uses the same next-hops for the same destinations,
independently of the routing instance it prefers among these
in R1 and in RU . This ensures the absence of loops for every
router reconfiguration ordering. The same argument applies to
Step 4. During Step 5, Conditions 3 and 4 are enforced, and
Theorem 2 ensures the absence of anomalies.

With respect to other disjoint RDs (if any) in the network,
Conditions 1 and 2 hold throughout all the previous steps,
hence Theorem 1 ensures the absence of anomalies.

Finally, when Step 5 is completed, all routers in R1 (resp.
R2) use R1 (resp. R2) to reach all destinations in the network,
using redistributed routes only for destinations outside R1

(resp. R2). Thus, RU is not used anymore, hence it can be
removed safely at Step 6.

Symmetric considerations apply to scenarios in which two
RDs R1 and R2 have to be merged in a single RD RU . Fig. 7
shows a procedure to perform the reconfiguration.

Theorem 5: The procedure in Fig. 7 does not incur recon-
figuration anomalies.

Proof: Assumptions 1 and 2 hold at Step 1 as they hold
in the initial configuration by hypothesis. This guarantees
the absence of anomalies [4], [5]. Moreover, this first step
enforces Assumption 1 in each intermediate configuration,
independently from AD settings.

Step 2 consists of a single-RD reconfiguration on routers in
R1 and R2. Since this step is carried out using the procedure
in Fig. 5, Theorem 3 guarantees the absence of reconfiguration
anomalies.

When RU is introduced at Step 3, it is not used by any
router in the network because of its AD. Hence, this step does
not affect configuration correctness.

At the end of Step 3, the configuration complies with both
Conditions 3 and 4. Those conditions are preserved throughout
Step 4, hence Theorem 2 ensures the absence of anomalies.
In steps 5 and 6, the forwarding paths of any router in the
network is ensured not to change, since link weights do not
change from p1 and p2 to pu. Moreover, in all the previous
steps, Conditions 1 and 2 hold, hence Theorem 1 ensures the
absence of anomalies involving routers outside RU .

Finally, no anomaly can occur during Step 7, as routers in
RU do not use p1 and p2 for any destination.

VI. USE CASE

In this section, we show that our techniques enable loss-
less reconfiguration in real networks using real routers. We
created a realistic reconfiguration case study based on the
pan-european research network Geant which is composed
of 36 routers and 53 links. The full network topology is
available at [17]. We deliberately removed stub routers from
the topology since they cannot cause any routing anomaly.
Also, we assigned link weights to be inversely proportional to
bandwidth. We emulated this network on an high-end server
using virtualized Cisco IOS images. By using virtual IOS
images, we rely on exactly the same control plane (i.e., routing
protocols) as real routers. The only difference with a lab of
real routers is the forwarding performance and the sharing of
CPU between different emulated routers.

For our reconfiguration test case, we divided the Geant
network into two routing domains: the backbone RD and the
south east RD, composed of 18 and 9 routers, respectively. The
initial RD uses OSPF, while the final backbone and south-east
RD uses OSPF and IS-IS, respectively. We selected frontier
routers based on their geographical location and their links,
hereby complying with the best current practices [8].

We implemented the procedures in Fig. 6 by scripting com-
mands on the emulated routers. We ran two experiments. In
the first one, we reconfigured the network using the procedure
in Fig. 6. In the second one, we used a variant of the procedure
(called “naive procedure”) in which route redistribution is
activated before reconfiguring the routers, i.e., we executed
Step 4 of Fig. 6 before Step 2. In both experiments, we
enforced Assumptions 1 and 2 to make sure that the initial
and the final configurations are correct and loop-free.

Each router pinged all other routers every second during the
entire reconfiguration. These probes allow us to detect routing
anomalies that affect the data plane without consuming too
much CPU. We repeated each experiment 10 times to improve
statistical significance.

Fig. 8 shows the evolution of the number of lost probes at
each step of the splitting procedure. The results were similar
across all repetitions. The naive procedure created loops that
caused up to 23% of all sent probes to be lost between steps
32 and 44. This is not surprising as these reconfiguration steps
consist in reconfiguring routers in the south east RD to prefer

migration steps

#
 l
o

s
t

p
ro

b
e

s
 (

%
 o

f
to

ta
l)

0 10 20 32 44 50

1
1

0
2

3
3

0

Naive procedure
Figure 6 procedure

Fig. 8. Comparison between a naive procedure to split a routing domain
and the procedure in Fig. 6. In this experiment, using the naive approach
results in about 23% of packet loss during 12 consecutive steps (≈ 20% of
the migration time). In contrast, virtually no traffic is lost using our procedure.

redistributed routes. At this point, forwarding loops appeared
because of the presence of redistributed routes. In contrast, our
procedure incurred no connectivity disruption. Observe that
a few iterations underwent a few losses, namely one or two
packets per source-destination pair, summing up to less than
1% of the probes. We double checked the affected steps and
verified the absence of persistent loops. We suspect that those
few lost packets are due to the virtual environment.

VII. CONCLUSIONS

In this paper, we study routing reconfigurations in net-
works with multiple routing domains (RDs) connected via
route redistribution. We show that neither the existing theory
on route redistribution nor the state-of-the-art reconfiguration
techniques can be applied without causing significant routing
anomalies. Unfortunately, this holds even when the desired
reconfiguration consists of configuration changes that affect a
single routing domain in a multi-RD network.

We have extended the existing theory with new sufficient
conditions for routing safety, and from these conditions, we
have devised provably correct procedures for reconfiguring
networks with multiple RDs. We performed an evaluation of
these procedures using realistic network topologies and real
router configurations. The results demonstrate the power of our
approach in eliminating all the forwarding loops that otherwise
cannot be avoided today. Furthermore, our new sufficient con-
ditions can serve as guidelines for making route redistribution
configurations more easily evolvable, i.e., through the proposed
reconfiguration procedures.

VIII. ACKNOWLEDGEMENTS

This work has been partially supported by the European
Commission’s Seventh Framework Programme (FP7/2007-
2013) grant no. 317647 (Leone), and by the ARC grant no.
13/18-054 from Communauté française de Belgique.

REFERENCES

[1] D. A. Maltz, G. Xie, J. Zhan, H. Zhang, G. Hjálmtýsson, and
A. Greenberg, “Routing design in operational networks: a look from
the inside,” in Proc. SIGCOMM, 2004.

[2] Y.-W. Sung, X. Sun, S. Rao, G. Xie, and D. Maltz, “Towards
systematic design of enterprise networks,” IEEE/ACM Trans. Netw.,
vol. 19, no. 3, pp. 695–708, Jun. 2011.

[3] F. Le, G. Xie, D. Pei, J. Wang, and H. Zhang, “Shedding light on the
glue logic of the internet routing architecture,” in Proc. SIGCOMM,
2008.

[4] F. Le and G. Xie, “On Guidelines for Safe Route Redistributions,” in
Proc. INM, 2007.

[5] F. Le, G. Xie, and H. Zhang, “Instability Free Routing: Beyond One
Protocol Instance,” in Proc. CoNext, 2008.

[6] L. Vanbever, S. Vissicchio, C. Pelsser, P. Francois, and O. Bonaventure,
“Lossless Migrations of Link-State IGPs,” IEEE/ACM Trans. Netw.,
vol. 20, no. 6, pp. 1842–1855, 2012.

[7] I. Pepelnjak, “Changing the Routing Protocol in Your Network,” 2007.
http://stack.nil.com/ipcorner/ChangingRoutingProtocol

[8] G. Herrero and J. van der Ven, Network Mergers and Migrations:

Junos Design and Implementation. Wiley, 2010.

[9] S. Raza, Y. Zhu, and C.-N. Chuah, “Graceful Network State
Migrations,” Trans. on Netw., vol. 19, no. 4, pp. 1097–1110, 2011.

[10] R. Keralapura, C.-N. Chuah, and Y. Fan, “Optimal Strategy for
Graceful Network Upgrade,” in Proc. INM, 2006.

[11] Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and
J. Rexford, “Virtual routers on the move: live router migration as a
network-management primitive,” in Proc. SIGCOMM, 2008.

[12] E. Keller, J. Rexford, and J. Van Der Merwe, “Seamless BGP
migration with router grafting,” in Proc. NSDI, 2010.

[13] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in Proc. SIGCOMM, 2012.

[14] F. Le, G. Xie, and H. Zhang, “Understanding route redistribution,” in
Proc. ICNP, 2007.

[15] ——, “Theory and new primitives for safely connecting routing
protocol instances,” in Proc. SIGCOMM, 2010.

[16] A. Alim and T. Griffin, “On the interaction of multiple routing
algorithms,” in Proc. CoNEXT, 2011.

[17] “GEANT Backbone Topology,” http://geant3.archive.geant.net/
Network/NetworkTopology/pages/home.aspx, 2012.

[18] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with rocketfuel,” in Proc. SIGCOMM, 2002.

[19] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” in Proc. SIGCOMM, 2008.

[20] C. Filsfils, P. Francois, M. Shand, B. Decraene, J. Uttaro,
N. Leymann, and M. Horneffer, “Loop-Free Alternate (LFA)
applicability in Service Provider (SP) networks,” RFC 6571, June
2012. http://tools.ietf.org/html/rfc6571

[21] R. Alimi, Y. Wang, and R. Yang, “Shadow configuration as a network
management primitive,” in Proc. SIGCOMM, 2008.

[22] P. Francois and O. Bonaventure, “Avoiding transient loops during the
convergence of link-state routing protocols,” Trans. on Netw., vol. 15,
no. 6, pp. 1280–1932, 2007.

[23] J. Fu, P. Sjodin, and G. Karlsson, “Loop-Free Updates of Forwarding
Tables,” Trans. on Netw. and Serv. Man., vol. 5, no. 1, pp. 22–35,
2008.

[24] L. Shi, J. Fu, and X. Fu, “Loop-Free Forwarding Table Updates with
Minimal Link Overflow,” in Proc. ICC, 2009.

[25] P. Francois, M. Shand, and O. Bonaventure, “Disruption-free topology
reconfiguration in OSPF Networks,” in Proc. INFOCOM, 2007.

[26] F. Clad, P. Mérindol, S. Vissicchio, P. Francois, and J.-J. Pansiot,
“Graceful Router Updates in Link-State Protocols,” in Proc. ICNP,
2013.

http://dx.doi.org/10.1145/1030194.1015472
http://dx.doi.org/10.1145/1030194.1015472
http://dx.doi.org/10.1109/TNET.2010.2089640
http://dx.doi.org/10.1109/TNET.2010.2089640
http://dx.doi.org/10.1145/1402946.1402964
http://dx.doi.org/10.1145/1402946.1402964
http://dx.doi.org/10.1145/1321753.1321765
http://dx.doi.org/10.1145/1544012.1544021
http://dx.doi.org/10.1145/1544012.1544021
http://inl.info.ucl.ac.be/publications/lossless-migrations-link-state-igps
http://stack.nil.com/ipcorner/ChangingRoutingProtocol
http://stack.nil.com/ipcorner/ChangingRoutingProtocol
http://books.google.be/books?isbn=1119964717
http://books.google.be/books?isbn=1119964717
http://www.ece.ucdavis.edu/~chuah/paper/2011/ton11-gnm.pdf
http://www.ece.ucdavis.edu/~chuah/paper/2011/ton11-gnm.pdf
http://dx.doi.org/10.1145/1162638.1162652
http://dx.doi.org/10.1145/1162638.1162652
http://dl.acm.org/citation.cfm?doid=1402946.1402985
http://dl.acm.org/citation.cfm?doid=1402946.1402985
https://www.usenix.org/legacy/event/nsdi10/tech/full_papers/keller.pdf
https://www.usenix.org/legacy/event/nsdi10/tech/full_papers/keller.pdf
http://dl.acm.org/citation.cfm?doid=2342356.2342427
http://doi.ieeecomputersociety.org/10.1109/ICNP.2007.4375839
http://dl.acm.org/citation.cfm?doid=1851182.1851210
http://dl.acm.org/citation.cfm?doid=1851182.1851210
http://dl.acm.org/citation.cfm?doid=2079296.2079303
http://dl.acm.org/citation.cfm?doid=2079296.2079303
http://geant3.archive.geant.net/Network/NetworkTopology/pages/home.aspx
http://geant3.archive.geant.net/Network/NetworkTopology/pages/home.aspx
http://dl.acm.org/citation.cfm?doid=633025.633039
http://dl.acm.org/citation.cfm?doid=633025.633039
http://www.cs.kent.edu/~javed/class-CXNET09S/papers-CXNET-2009/FaLV08-DataCenter-interconnect-p63-alfares.pdf
http://www.cs.kent.edu/~javed/class-CXNET09S/papers-CXNET-2009/FaLV08-DataCenter-interconnect-p63-alfares.pdf
http://tools.ietf.org/html/rfc6571
http://tools.ietf.org/html/rfc6571
http://tools.ietf.org/html/rfc6571
http://www.cs.yale.edu/homes/yw254/doc/ShadowConfiguration_SIGCOMM2008.pdf
http://www.cs.yale.edu/homes/yw254/doc/ShadowConfiguration_SIGCOMM2008.pdf
http://inl.info.ucl.ac.be/publications/avoiding-transient-loops-during-conve
http://inl.info.ucl.ac.be/publications/avoiding-transient-loops-during-conve
http://www.ee.kth.se/php/modules/publications/reports/2008/IR-EE-LCN_2008_012.pdf
http://www.ee.kth.se/php/modules/publications/reports/2008/IR-EE-LCN_2008_012.pdf
http://dl.acm.org/citation.cfm?id=1817661
http://dl.acm.org/citation.cfm?id=1817661
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4215601
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4215601
http://inl.info.ucl.ac.be/publications/graceful-router-updates-link-state-protocols

	Introduction
	Reconfigurations With Route Redistribution
	Problem Overview
	Experimental Analysis

	Limitations of Existing Theory
	Background and Notation
	Known Sufficient Conditions Cannot be Preserved in the Reconfiguration
	Generalization of Existing Techniques is not Easy

	New Sufficient Conditions for Loop-Free Route Redistribution
	Sufficient Conditions for Disjoint Routing Domains
	Sufficient Conditions for Nested Routing Domains
	Enforcing the Sufficient Conditions in Practice

	Loop-Free Reconfigurations
	Revisiting Single-RD Techniques
	Safe Procedures for Multi-RD Reconfigurations

	Use Case
	Conclusions
	Acknowledgements
	References

