Quantifying interferences between measurements on RIPE Atlas

Thomas Holterbach^{1,2}, Cristel Pelsser², Randy Bush², Laurent Vanbever¹ ¹ETH Zurich ²Internet Initiative Japan

1. Introduction and Motivation -

- RIPE Atlas is getting widely used
 - By researchers [1][2]
 - For debugging purposes [3]
- The overall load is increasing
 - Atlas probe 20621 (v1) performed 608,824 measurements in March 2015 [4]
 - Users perform millions of measurements [4]

The impact of this load on the precision is unknown

2. Objectives and Methodology

- Measurements may interfere with other measurements
 - We measure the effect on RIPE Atlas. We focus on **probes v2** (20% of the probes)
- Measure the impact of using an Atlas probe as traceroute source.
 - We performed successively 10, 25, 50, 100, 250, 500 one-off traceroute measurements
 - At the same time we pinged from and toward the probe to measure response time

Measure the impact of using an Atlas probe as destination

toward the probe increase

- We pinged the Atlas probe from several NL Ring nodes
- Every two minutes a new NL Ring node starts to perform ping toward the Atlas probe

Delay-based measurements from (top) and toward

(bottom) the probe are impacted as the measurements

• At the same time we pinged from the Atlas probe to measure the response time

3. Measurements

Delay-based measurements originated **from** the probe are impacted when other measurements are launched on the probe

Delay-based measurements **toward** the probe are impacted when other measurements are launched

4. Observations and Conclusion

	Increased source load		Increased destination load	
	Mean	90 th	Mean	
Src-based delay effect	+ 4/5ms	+ 6ms	550 pings/s :	+1/2ms
Dst-based delay effect	+ 0.7ms	+ 0.8ms	1100 ping/s : Probe gets crazy	

Standard deviation is also impacted

What about Atlas probes v1 (11%) and v3 (69%)?

• Atlas probe v1 : we observe same degradations

• Atlas probe v3 : more powerful -> lower impact

Atlas probe measurements can be poluted by concurrent measurements, but a better hardware mitigates the impact

5. References —

[1] M. Rimondini, C. Squarcella, G. Di Battista. Towards an Automated Investigation of the Impact of BGP Routing Changes on Network Delay Variations, PAM 2014

[2] R. Fanou, F. Pierre, E. Aben. On the Diversity of Interdomain Routing in Africa. PAM 2015 [3] E. Aben. A RIPE Atlas View of Internet Meddling in Turkey. https://labs.ripe.net/Members/emileaben/a-ripe-atlas-view-of-internet-meddling-in-turkey [4] https://atlas.ripe.net/get-involved/community/

We thank the RIPE Atlas support team for accommodating our measurements and being prompt to reply to our questions.