
Towards validated network
configurations with NCGuard

Laurent Vanbever, Grégory
Pardoen and Olivier Bonaventure

WODNAFOʼ10, Adelaide
Mon 8 Feb 2010

http://inl.info.ucl.ac.be

1

http://inl.info.ucl.ac.be/lvanbeve
http://inl.info.ucl.ac.be/lvanbeve

Human factors are responsible for 50 to
80 percent of network device outages

Juniper Networks, What’s Behind Network Downtime?, 2008

2

Configuring networks is like writing a
distributed program in assembly language

Sihyung Lee, ICC, 2008

3

Current approaches could be divided
into static analysis and data mining

‣ Effective

‣ You need to know what a valid network is

Use pattern matching to find known misconfigurations

For example, every router must belong to the iBGP full-mesh
Compare configurations to given specifications

For example, look for typing error in network advertisement

Pros and cons

‣ How do you deal with heterogenous languages ?

4

‣ Completely independent of a priori specifications

‣ Too verbose. People are flooded with false positives

Statistical analysis of configurations

Try to understand the meaning of the network
Infer network-specific policies for deviation analysis

e.g., throw error if an instruction is defined everywhere but on
one device

Pros and cons

‣ How do you deal with heterogenous languages ?

Current approaches could be divided
into static analysis, and data mining

5

This situation contrasts with
development in software engineering

Requirements describe precisely systems behavior
lack of equivalence in network configuration

currently, devices perform only syntax validation

New development schemes improve efficiency

Validation techniques for systematic error detection

the CLI approach hasnʼt change very much since ~1990

6

Our approach: a high-level representation
with a validation and generation engine

High-level representation abstracts useless details
it could be used as a documented view of a network

and that they will be respected in the future

Generation produces low-level configurations

Validation (rules-based) ensures specifications are
respected

that are understandable by the components

7

NCGuard follows a top-down approach

8

INPUTLegend:

SPECIFICATIONS
NETWORK

REPRESENTATION

NCGuard follows a top-down approach

8

PROCESS

VALIDATOR

INPUTLegend:

SPECIFICATIONS
NETWORK

REPRESENTATION

NCGuard follows a top-down approach

8

OUTPUT

ERRORS &
WARNINGS

PROCESS

VALIDATOR

INPUTLegend:

SPECIFICATIONS
NETWORK

REPRESENTATION

NCGuard follows a top-down approach

8

OUTPUT

ERRORS &
WARNINGS

GENERATOR

PROCESS

VALIDATOR

INPUTLegend:

SPECIFICATIONS
NETWORK

REPRESENTATION

NCGuard follows a top-down approach

8

OUTPUT

ERRORS &
WARNINGS

CISCO
TEMPLATE

JUNIPER
TEMPLATE

GENERATOR

PROCESS

VALIDATOR

INPUTLegend:

SPECIFICATIONS
NETWORK

REPRESENTATION

NCGuard follows a top-down approach

8

OUTPUT

ERRORS &
WARNINGS

CISCO
TEMPLATE

JUNIPER
TEMPLATE

DEVICE 1
CONFIG. ...DEVICE 2

CONFIG.
DEVICE N
CONFIG.

GENERATOR

PROCESS

VALIDATOR

INPUTLegend:

SPECIFICATIONS
NETWORK

REPRESENTATION

NCGuard follows a top-down approach

8

Towards validated network configurations

High-level representation

Configuration generation
The use of templates

Configuration validation
A rule-based approach

Hide useless details

9

Towards validated network configurations

High-level representation

Configuration generation
The use of templates

Configuration validation
A rule-based approach

Hide useless details

10

High-level representation is a concise,
and practical view of a network

High-level means no more redundancy
now, you can configure an iBGP full-mesh in a single line

no need to bother yourself with language details
High-level means vendor-independent

<node id="NY">
 <characteristics>
 <reference>
 <constructor>juniper</constructor>
 ...
 <rid>64.57.28.242</rid>
 <interfaces>
 	 <interface id="so-0/0/0">
 	 <unit number="0">

<ip4 mask="31">64.57.28.10</ip4>

11

Towards validated network configurations

High-level representation

Configuration generation
The use of templates

Configuration validation
A rule-based approach

Hide useless details

12

A rule is a condition that must be met
by the high-level representation

Many rules follow well-known patterns

‣Presence or non-presence
Each router must have a loopback interface

‣Uniqueness
IP address must be unique

‣Symmetry
MTU must be equal on both sides of a link

‣Custom
Each OSPF area must be connected to the backbone area

Validation is performed by using rules

13

Rules are implemented by
using three techniques

14

Structural constraints (XML Schema): Structural rules

Rules are implemented by
using three techniques

14

Structural constraints (XML Schema): Structural rules

Queries on the representation (XQuery): Query rules

Rules are implemented by
using three techniques

14

Structural constraints (XML Schema): Structural rules

Queries on the representation (XQuery): Query rules

Programming language (Java): Language rules

Rules are implemented by
using three techniques

14

Structural constraints (XML Schema): Structural rules

Queries on the representation (XQuery): Query rules

Programming language (Java): Language rules

PRESENCE
NON-PRESENCE

UNIQUENESS SYMMETRY CUSTOM

STRUCTURAL
RULES

QUERY RULES

LANGUAGE
RULES

✓ ✓ ✓
✓ ✓ ✓ ✓

✓

Rules are implemented by
using three techniques

14

A configuration node is an element of
the high-level representation

• A node is composed of attributes

A scope is a set of configuration nodes

descendants(x) is a subset of the scope’s
element x

Routers

R1 R2

Interface
so-0/0/1

Interface
so-0/0/1

Interface
loopback

Interface
loopback

: Configuration node

Rules are defined by using
a scope and a set of descendants

15

Scope: All routers

A configuration node is an element of
the high-level representation

• A node is composed of attributes

A scope is a set of configuration nodes

descendants(x) is a subset of the scope’s
element x

Routers

R1 R2

Interface
so-0/0/1

Interface
so-0/0/1

Interface
loopback

Interface
loopback

: Configuration node

Rules are defined by using
a scope and a set of descendants

15

Scope: All routers

descendants(R1) :
all R1’s interfaces

A configuration node is an element of
the high-level representation

• A node is composed of attributes

A scope is a set of configuration nodes

descendants(x) is a subset of the scope’s
element x

Routers

R1 R2

Interface
so-0/0/1

Interface
so-0/0/1

Interface
loopback

Interface
loopback

: Configuration node

Rules are defined by using
a scope and a set of descendants

15

Scope: All routers

descendants(R2) :
all R2’s interfaces

descendants(R1) :
all R1’s interfaces

A configuration node is an element of
the high-level representation

• A node is composed of attributes

A scope is a set of configuration nodes

descendants(x) is a subset of the scope’s
element x

Routers

R1 R2

Interface
so-0/0/1

Interface
so-0/0/1

Interface
loopback

Interface
loopback

: Configuration node

Rules are defined by using
a scope and a set of descendants

15

Scope: All routers

Interfaces of R1 Interfaces of R2

Each router must have a loopback interface

Routers

R1 R2

Interface
id: so-0/0/0

Interface
id: so-0/0/0

Interface
id: loopback

Interface
id: loopback

Presence rules check whether
nodes are in the representation

16

Scope: All routers

Interfaces of R1 Interfaces of R2

Each router must have a loopback interface

Routers

R1 R2

Interface
id: so-0/0/0

Interface
id: so-0/0/0

Interface
id: loopback

Interface
id: loopback

Interface
id: loopback

Interface
id: loopback

: Seeked node

Presence rules check whether
nodes are in the representation

16

There is at least one configuration node respecting a given
condition in each descendants set.

<rule id="LOOPBACK_INTERFACE_ON_EACH_NODE" type="presence">
<presence>
	 <scope>ALL_NODES</scope>
	 <descendants>interfaces/interface</descendants>
	 <condition>@id='loopback'</condition>
</presence>
</rule>

Each router must have a loopback interface

∀x ∈ scope ∃y ∈ descendants(x) : Cpresence(T, y)

∀x ∈ routers ∃y ∈ interfaces(x) : y.id = loopback

Presence rules check whether
nodes are in the representation

17

There is at least one configuration node respecting a given
condition in each descendants set.

<rule id="LOOPBACK_INTERFACE_ON_EACH_NODE" type="presence">
<presence>
	 <scope>ALL_NODES</scope>
	 <descendants>interfaces/interface</descendants>
	 <condition>@id='loopback'</condition>
</presence>
</rule>

Each router must have a loopback interface

∀x ∈ scope ∃y ∈ descendants(x) : Cpresence(T, y)

∀x ∈ routers ∃y ∈ interfaces(x) : y.id = loopback

Presence rules check whether
nodes are in the representation

17

There is at least one configuration node respecting a given
condition in each descendants set.

<rule id="LOOPBACK_INTERFACE_ON_EACH_NODE" type="presence">
<presence>
	 <scope>ALL_NODES</scope>
	 <descendants>interfaces/interface</descendants>
	 <condition>@id='loopback'</condition>
</presence>
</rule>

Each router must have a loopback interface

∀x ∈ scope ∃y ∈ descendants(x) : Cpresence(T, y)

∀x ∈ routers ∃y ∈ interfaces(x) : y.id = loopback

Presence rules check whether
nodes are in the representation

17

There is at least one configuration node respecting a given
condition in each descendants set.

<rule id="LOOPBACK_INTERFACE_ON_EACH_NODE" type="presence">
<presence>
	 <scope>ALL_NODES</scope>
	 <descendants>interfaces/interface</descendants>
	 <condition>@id='loopback'</condition>
</presence>
</rule>

Each router must have a loopback interface

∀x ∈ scope ∃y ∈ descendants(x) : Cpresence(T, y)

∀x ∈ routers ∃y ∈ interfaces(x) : y.id = loopback

Presence rules check whether
nodes are in the representation

17

There is at least one configuration node respecting a given
condition in each descendants set.

<rule id="LOOPBACK_INTERFACE_ON_EACH_NODE" type="presence">
<presence>
	 <scope>ALL_NODES</scope>
	 <descendants>interfaces/interface</descendants>
	 <condition>@id='loopback'</condition>
</presence>
</rule>

Each router must have a loopback interface

∀x ∈ scope ∃y ∈ descendants(x) : Cpresence(T, y)

∀x ∈ routers ∃y ∈ interfaces(x) : y.id = loopback

Presence rules check whether
nodes are in the representation

17

Routers interfaces identifiers must be unique

Routers

R1 R2

Interface
id: loopback

Interface
id: so-0/0/0

Interface
id: so-0/0/0

Interface
id: so-0/0/0

Uniqueness rules verify the cardinality
of a field among a set of nodes

18

Scope : All routers

Routers interfaces identifiers must be unique

Routers

R1 R2

Interface
id: loopback

Interface
id: so-0/0/0

Interface
id: so-0/0/0

Interface
id: so-0/0/0

Uniqueness rules verify the cardinality
of a field among a set of nodes

18

Scope : All routers

Routers interfaces identifiers must be unique

Routers

R1 R2

Interface
id: loopback

Interface
id: so-0/0/0

Ids of R1’s interfaces are unique.

Interface
id: loopback

Interface
id: so-0/0/0

Interface
id: so-0/0/0

Interface
id: so-0/0/0

Uniqueness rules verify the cardinality
of a field among a set of nodes

18

Scope : All routers

Routers interfaces identifiers must be unique

Routers

R1 R2

Interface
id: loopback

Interface
id: so-0/0/0

Ids of R1’s interfaces are unique.

Interface
id: loopback

Interface
id: so-0/0/0

Interface
id: so-0/0/0

Interface
id: so-0/0/0

Ids of R2’s interfaces are not unique
The rule will failed.

Interface
id: so-0/0/0

Interface
id: so-0/0/0

Uniqueness rules verify the cardinality
of a field among a set of nodes

18

Check if there is no two configuration nodes with identical
value of field

Uniqueness of routers interfaces identifiers

∀x ∈ scope ∀y ∈ d(x) : ¬(∃z �=y ∈ d(x) : y.field = z.field)

∀x ∈ routers ∀y ∈ interfaces(x) : ¬(∃z �=y ∈ interfaces(x) : y.id = z.id)

<rule id="UNIQUENESS_INTERFACE_ID" type="uniqueness">
<uniqueness>
	 <scope>ALL_NODES</scope>
	 <descendants>interfaces/interface</descendants>
	 <field>@id</field>
</uniqueness>
</rule>

Uniqueness rules verify the cardinality
of a field among a set of nodes

19

Check if there is no two configuration nodes with identical
value of field

Uniqueness of routers interfaces identifiers

∀x ∈ scope ∀y ∈ d(x) : ¬(∃z �=y ∈ d(x) : y.field = z.field)

∀x ∈ routers ∀y ∈ interfaces(x) : ¬(∃z �=y ∈ interfaces(x) : y.id = z.id)

<rule id="UNIQUENESS_INTERFACE_ID" type="uniqueness">
<uniqueness>
	 <scope>ALL_NODES</scope>
	 <descendants>interfaces/interface</descendants>
	 <field>@id</field>
</uniqueness>
</rule>

Uniqueness rules verify the cardinality
of a field among a set of nodes

19

Check if there is no two configuration nodes with identical
value of field

Uniqueness of routers interfaces identifiers

∀x ∈ scope ∀y ∈ d(x) : ¬(∃z �=y ∈ d(x) : y.field = z.field)

∀x ∈ routers ∀y ∈ interfaces(x) : ¬(∃z �=y ∈ interfaces(x) : y.id = z.id)

<rule id="UNIQUENESS_INTERFACE_ID" type="uniqueness">
<uniqueness>
	 <scope>ALL_NODES</scope>
	 <descendants>interfaces/interface</descendants>
	 <field>@id</field>
</uniqueness>
</rule>

Uniqueness rules verify the cardinality
of a field among a set of nodes

19

Check if there is no two configuration nodes with identical
value of field

Uniqueness of routers interfaces identifiers

∀x ∈ scope ∀y ∈ d(x) : ¬(∃z �=y ∈ d(x) : y.field = z.field)

∀x ∈ routers ∀y ∈ interfaces(x) : ¬(∃z �=y ∈ interfaces(x) : y.id = z.id)

<rule id="UNIQUENESS_INTERFACE_ID" type="uniqueness">
<uniqueness>
	 <scope>ALL_NODES</scope>
	 <descendants>interfaces/interface</descendants>
	 <field>@id</field>
</uniqueness>
</rule>

Uniqueness rules verify the cardinality
of a field among a set of nodes

19

Check if there is no two configuration nodes with identical
value of field

Uniqueness of routers interfaces identifiers

∀x ∈ scope ∀y ∈ d(x) : ¬(∃z �=y ∈ d(x) : y.field = z.field)

∀x ∈ routers ∀y ∈ interfaces(x) : ¬(∃z �=y ∈ interfaces(x) : y.id = z.id)

<rule id="UNIQUENESS_INTERFACE_ID" type="uniqueness">
<uniqueness>
	 <scope>ALL_NODES</scope>
	 <descendants>interfaces/interface</descendants>
	 <field>@id</field>
</uniqueness>
</rule>

Uniqueness rules verify the cardinality
of a field among a set of nodes

19

Such rules can be checked implicitly by the high-level
representation

Symmetry rules verify the equality
of a field among a set of nodes

20

Such rules can be checked implicitly by the high-level
representation

MTU must be equal on both ends of a link

Symmetry rules verify the equality
of a field among a set of nodes

20

Such rules can be checked implicitly by the high-level
representation

MTU must be equal on both ends of a link

Automatically checked by modeling it once at the link level,
instead of twice at the interfaces level

Hypothesis: duplication phase is correct

Symmetry rules verify the equality
of a field among a set of nodes

20

They are expressed in a query or programming language

<rule id="ALL_AREAS_CONNECTED_TO_BACKBONE_AREA" type="custom">
 <custom>
 <xquery>
 for $area in /domain/ospf/areas/area[@id!="0.0.0.0"]
 let $nodes := $area/nodes/node
 where count(/domain/ospf/areas/area) > 1
 and not(some $y in $nodes satisfies /domain/ospf/areas/
 area[@id="0.0.0.0"]/nodes/node[@id=$y/@id])
 	 return
 <result><area id="{$area/@id}"/></result>
 </xquery>
 </custom>
</rule>

Example: All OSPFs areas must be connected to the backbone

Custom rules check advanced conditions

21

Over 100 rules were written for
a network composed of 9 routers

Type Total

Presence, non-presence

Uniqueness

Symmetry

Custom

97

20

10

9

136Total

22

Towards validated network configurations

High-level representation

Configuration generation
The use of templates

Configuration validation
A rule-based approach

Hide useless details

23

Configurations are automatically produced
based on the high-level representation

We use intermediate representations
it represents the high-level configuration of one device

Templates translate them into configuration files
templates are vendor-specific

To support a new vendor, add a new template
we have a template for Juniper and Cisco configurations

24

Low-level configurations are
automatically generated

interfaces {
 lo0 {
 unit 0 {
 family inet {
 address 198.32.8.200/32;
 }
 family inet6 {
 address 2001:468:16::1/128;
 }
 }
 }

<node id="SALT">
<interfaces>

<interface id="lo0">
<unit number="0">

<ip4>198.32.8.200</ip4>
<ip6>2001:468:16::1</ip6>

 </unit>
 </interface>
</interfaces>

</node>

GENERATOR
JUNIPER

TEMPLATE

25

Low-level configurations are
automatically generated

<node id="SALT">
<interfaces>

<interface id="lo0">
<unit number="0">

<ip4>198.32.8.200</ip4>
<ip6>2001:468:16::1</ip6>

 </unit>
 </interface>
</interfaces>

</node>

GENERATOR
JUNIPER

TEMPLATE

interface Loopback0
ip address 198.32.8.200/32;
ipv6 address 2001:468:16::1/128;

!

CISCO
TEMPLATE

25

Demonstration

26

Towards validated network configurations

High-level representation

Configuration generation
The use of templates

Configuration validation
A rule-based approach

Hide useless details

28

Producing validated network
configurations is possible

Use high-level representations
suppress redundancy, hide useless details

really easy to add rules (most are a few lines length)

Generate low-level configurations automatically

Validate the representation

flexibility is kept by letting you modify the templates

29

What is next ?

Improve the high-level representation ?
XML may not be the most appropriate...

e.g., rules checking the BCP of OSPF, BGP, etc.

An open-source library of validation rules ?

Can we deploy generated configurations automatically ?
and, if possible, without traffic disruption

How do we validate dynamic properties ?

30

Towards validated network configurations

Thank you for your attention
Any questions ?

Laurent Vanbever
http://inl.info.ucl.ac.be/lvanbeve

31

http://inl.info.ucl.ac.be/lvanbeve
http://inl.info.ucl.ac.be/lvanbeve

