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Abstract
We present Blink, a data-driven system that leverages TCP-
induced signals to detect failures directly in the data plane.
The key intuition behind Blink is that a TCP flow exhibits a
predictable behavior upon disruption: retransmitting the same
packet over and over, at epochs exponentially spaced in time.
When compounded over multiple flows, this behavior creates
a strong and characteristic failure signal. Blink efficiently
analyzes TCP flows to: (i) select which ones to track; (ii)
reliably and quickly detect major traffic disruptions; and (iii)
recover connectivity—all this, completely in the data plane.

We present an implementation of Blink in P4 together with
an extensive evaluation on real and synthetic traffic traces.
Our results indicate that Blink: (i) achieves sub-second rerout-
ing for large fractions of Internet traffic; and (ii) prevents
unnecessary traffic shifts even in the presence of noise. We
further show the feasibility of Blink by running it on an actual
Tofino switch.

1 Introduction
Thanks to widely deployed fast-convergence frameworks
such as IPFFR [35], Loop-Free Alternate [7] or MPLS Fast
Reroute [29], sub-second and ISP-wide convergence upon link
or node failure is now the norm [6, 15]. At a high-level, these
fast-convergence frameworks share two common ingredients:
(i) fast detection by leveraging hardware-generated signals
(e.g., Loss-of-Light or unanswered hardware keepalive [23]);
and (ii) quick activation by promptly activating pre-computed
backup state upon failure instead of recomputing the paths
on-the-fly.

Problem: Convergence upon remote failures is still slow.
These frameworks help ISPs to retrieve connectivity upon
internal (or peering) failures but are of no use when it comes
to restoring connectivity upon remote failures. Unfortunately,
remote failures are both frequent and slow to repair, with aver-
age convergence times above 30 s [19, 24, 28]. These failures
indeed trigger a control-plane-driven convergence through
the propagation of BGP updates on a per-router and per-prefix

Figure 1: It can take minutes to receive the first BGP update
following data-plane failures during which traffic is lost.

basis. To reduce convergence time, SWIFT [19] predicts the
entire extent of a remote failure from a few received BGP
updates, leveraging the fact that such updates are correlated
(e.g., they share the same AS-PATH). The fundamental prob-
lem with SWIFT though, is that it can take O(minutes) for
the first BGP update to propagate after the corresponding
data-plane failure.

We illustrate this problem through a case study, by mea-
suring the time the first BGP updates took to propagate after
the Time Warner Cable (TWC) networks were affected by an
outage on August 27 2014 [1]. We consider as outage time t0,
the time at which traffic originated by TWC ASes observed
at a large darknet [10] suddenly dropped to zero. We then col-
lect, for each of the routers peering with RouteViews [27] and
RIPE RIS [2], the timestamp t1 of the first BGP withdrawal
they received from the same TWC ASes. Figure 1 depicts
the CDFs of (t1 − t0) over all the BGP peers (100+ routers,
in most cases) that received withdrawals for 7 TWC ASes:
more than half of the peers took more than a minute to receive
the first update (continuous lines). In addition, the CDFs of
the time difference between the outage and the last prefix
withdrawal for each AS, show that BGP convergence can be
as slow as several minutes (dashed lines).



In short, a fundamental question is still open: Is it possible
to build a fast-reroute framework for ISPs that can converge
in O(seconds) for both local and remote failures?

Blink: fast, data-driven convergence upon remote failures.
We answer this question affirmatively by developing Blink,
a data-driven fast-reroute framework built on top of pro-
grammable data planes. Blink key insight is to reroute based
on data-plane signals rather than control-plane ones. Quickly
after a failure, data-plane traffic indeed exhibits a predictable
behavior: all the TCP endpoints start retransmitting the same
packet over and over, at epochs exponentially spaced in time.
When compounded over multiple flows, this behavior cre-
ates a strong and characteristic failure signal. With Blink, we
show that this signal can be efficiently tracked at line rate and
enables sub-second convergence after most remote failures.

Key challenges. Tracking failure signals in the data plane is
challenging for at least three reasons. First, monitoring all
flows is impossible because of memory constraints. At the
same time, randomly sampling flows often results in tracking
useless flows, e.g., ones that seldom transmit. We address this
problem by developing a flow selector which automatically
evicts inactive flows and replaces them with active ones.

Second, packet loss routinely happens in the Internet,
e.g., due to temporary congestion. Rerouting upon any re-
transmission would result in huge, and counterproductive
traffic shifts. We address this challenge by: (i) focusing on
timeout-induced retransmissions, which are infrequent (as we
confirmed analyzing real traces); and (ii) leveraging the fact
that failures affect many flows simultaneously.

Third, data-plane signals provide no information about the
root cause of the problem.Worse, uncoordinated rerouting
decisions can lead to forwarding issues such as blackholes,
forwarding loops, and oscillations. In Blink, we solve these
problems by also making the backup selection data-driven,
i.e., by tracking if flows resume after rerouting them.

We fully implemented Blink in P416. Our evaluation, which
includes experiments on a real Barefoot Tofino switch, shows
that Blink retrieves connectivity within 1 s for the vast major-
ity of the considered failure cases.

Main contributions. Our main contributions are:

• A new approach for quickly recovering connectivity upon
remote failures based on data-plane signals (§2).

• The Blink pipeline, which enables programmable data
planes to track failure signals at line rate and to automati-
cally retrieve connectivity (§3 and §4).

• An implementation1 of Blink in Python and P416 (§5).

• An evaluation of Blink using synthetic and real packet
traces, emulations, and hardware experiments (§6).

• A discussion on how to deploy Blink, along with how to
protect it from malicious and crafted traffic (§7).
1Our source code is available at: https://blink.ethz.ch

2 Key Principles and Challenges
In this section, we first show that TCP traffic exhibits a char-
acteristic pattern upon failures (§2.1). We then discuss the
key challenges and requirements to detect such a pattern, and
recover connectivity by rerouting the affected prefixes, while
operating entirely in the data plane, at line rate (§2.2).

2.1 Data-plane signals upon failures
Consider an Internet path (A,B,C,D) carrying tens of thou-
sands of TCP flows, destined to thousand prefixes, in which
the link (B,C) suddenly fails. We are interested in monitoring
the data-plane “failure signal” perceived at A, with the goal
of enabling A to detect it and to also recover connectivity by
rerouting traffic through a different path (if any). Observe that
A is not adjacent to the failure, i.e., the failure is remote.

As the link (B,C) fails, the TCP endpoints stop receiving
acknowledgements (ACKs), and each of them will timeout
after its retransmission timeout (RTO) expires, which will
cause it to reset its congestion window to one segment and
start retransmitting the first unacknowledged segment. Since
the RTO is computed according to the RTT observed, each
TCP endpoint will retransmit at a different time. Specifically,
each TCP endpoint adjusts its RTO using the following re-
lation: RTO = sRTT + 4*RTTVAR (see [31]), where sRTT
corresponds to the smoothed RTT, and RTTVAR corresponds
to the RTT variation. After each retransmission, each TCP
endpoint further doubles its RTO (exponential backoff).

We illustrate the behavior of a TCP flow experiencing a
failure in Figure 2. We assume that the TCP endpoint has an
estimated RTO of 200 ms and that its congestion window can
hold 4 packets. We denote by t the time at which the TCP
endpoint transmits the first packet following the failure. The
TCP endpoint experiences consecutive RTO expirations and
retransmits the packet with sequence number 1000 at time
t + 200ms, t + 600ms, t + 1400ms, etc. We experimentally
verified that this behavior is similar across all TCP flavors
implemented in the latest Linux kernel.

When multiple flows experience the same failure, the signal
obtained by counting the overall retransmissions consists of
“retransmission waves”. Since this behavior is systematic, pro-
nounced, and quick, we leverage it in Blink to perform failure
detection in the data plane. This suggests Blink does not de-
pend on specific TCP implementation details and would keep
working effectively with future congestion control algorithms
as long as they exhibit a similar behavior upon failures.

Note however the shape of these retransmission waves,
i.e., their amplitude and width, depends on the distribution
of the estimated RTTs. As an illustration, Figure 3 shows the
retransmission count for a trace that we generated with the
ns-3 simulator [3] after simulating a link failure (according
to the methodology in §6.1). In the left diagram, we used the
distribution of the average RTTs of the TCP flows from an
actual traffic trace (#8 in Table 3 in §E). In the right diagram,
we increased the RTTs of this distribution by 1.5 to obtain

https://blink.ethz.ch
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Figure 2: After the failure, a TCP flow keeps retransmitting
the last unacknowledged segment according to an exponential
backoff. The exact timing of the retransmissions depends on
the estimated RTO before the failure (here 200ms).

a larger standard deviation. We can clearly see the waves of
retransmissions appearing within a second after each failure.
RTT distributions with small variance make the flows more
synchronized they will be when retransmitting. This translates
into narrow peaks of retransmissions with a high amplitude.
Conversely, if the flows have very different RTTs (i.e., the
variance is high), the peaks will have a smaller amplitude and
will spread over a longer time. We elaborate on the challenges
deriving from these observations hereafter.

2.2 Key challenges and requirements when
fast rerouting using data-plane signals

We now highlight four key challenges and requirements that
must be addressed to: (i) efficiently capture the failure signal
we just described; and (ii) recover connectivity. We describe
in §3 how does Blink address them entirely in the data plane.

Dealing with noisy signal. To discover its fair share of band-
width, a TCP endpoint keeps increasing its transmission rate
until a packet loss is detected, triggering a retransmission.
TCP retransmissions therefore occur naturally, even with-
out network failures. Likewise, minor temporary congestion
events can also lead to bursts of packet drops, which will
trigger subsequent bursts of retransmissions, again, without
necessarily implying a failure.

Requirement 1: A data-plane-driven fast-reroute system
should only react to major disruptive events while being
immune to noise and ordinary protocol behavior.

Dealing with fading signals. As shown in Figure 3, the am-
plitude of the signal (i.e., the count of TCP retransmissions)

(a) Failure Signal (RTT 1×) (b) Failure Signal (RTT 1.5×)

Figure 3: The signal generated by TCP flows experiencing
a connectivity problem is characteristic and composed of
subsequent waves of retransmissions (in different colors). The
waves have decreasing amplitude and increasing width.

quickly fades with the backoff round as the compounded sig-
nal spreads over longer and longer periods.

Requirement 2: A data-plane-driven fast-reroute system
should catch the failure signal within the first retransmission
rounds.

Mitigating the effect of sampling. As tracking retransmis-
sions in real-time requires state, monitoring all flows is not
possible. As such, a fast-reroute system will necessarily have
to track and detect failures using a subset of the flows. Yet, not
all flows are equally useful when it comes to failure reaction:
intuitively, highly active flows will retransmit almost imme-
diately, while long-lived flows might not retransmit at all (if
no packet was sent recently). From a fast-reroute viewpoint,
tracking non-active flows is useless.

Requirement 3: A data-plane-driven fast-reroute system
should select the flows it tracks according to their activity.

Ensuring forwarding correctness without control plane.
While data-plane signals are faster to propagate than control-
plane ones, they carry no information about the cause of
the failure and how to avoid it. As such, simply rerouting
to a backup next-hop upon detecting a problem might not
work, as it might also be affected by the failure. Worse, the
problem can even be at the destination itself, in which case
no alternative next-hop will actually work. Given this lack of
precise information, a data-plane-driven fast-reroute system
has no other choice but trying and observing.

Requirement 4: A data-plane-driven fast-reroute system
should select its backup next-hops in a data-driven manner,
verifying that traffic resumes.



3 Overview
In this section, we provide a high-level description of Blink.
We first focus on its data-plane implementation (§3.1) and
how it: (i) selects flows to track; (ii) detects failures; and (iii)
reroutes traffic. We then describe how Blink can be deployed
at the network level (§3.2).

3.1 Blink, at the node level
Figure 4 describes the overall workflow of a Blink data-plane
pipeline. The pipeline is essentially composed of three consec-
utive stages: (i) a selection stage which efficiently identifies
active flows to monitor; (ii) a detection stage which analyzes
RTO-induced retransmissions across the monitored flows and
looks for any significant increase; and (iii) a rerouting stage
which is in charge of retrieving connectivity by probing al-
ternative next-hops upon failure. We now briefly describe the
key ingredients behind each stage and provide details in §4.

Selecting flows to track. For efficiency and scalability, a
Blink node cannot track all possible 700k+ IP prefixes or
even all the flows destined to some prefixes. An initial de-
sign choice thus concerns which prefixes to track, and which
specific flows to track for the selected prefixes.

Any approach based on data-plane signals is able to effec-
tively monitor only the prefixes carrying a certain amount of
packets. Blink is no exception, and therefore focuses on the
most popular destination prefixes. While this might seem a
limitation, it is actually a feature: the Internet traffic is typ-
ically skewed [32], and a very limited fraction of prefixes
carries most of the traffic, while the rest of the prefixes see
little to none. Blink can thus reroute the vast majority of the
traffic by tracking a limited number of prefixes. We designed
Blink to accommodate at least 10 k prefixes in current pro-
grammable switches (§5).

Regarding which flows to track for a prefix, Blink adopts a
simple but effective strategy. For each monitored prefix, the
Flow Selector tracks a very small subset (64, by default) of
active flows—i.e., flows that send at least one packet within
a moving time window (2 s by default). Tracked flows are
replaced as soon as they become inactive, or after a given
timeout (8.5 min by default) even if they remain active. We
did not reuse heavy hitter detection algorithms such as [36],
since they are designed to offer higher accuracy than we need
(heaviest flows instead of just active ones) at the expense of
additional complexity and resources.

Detecting failures. A central idea of our approach is to infer
remote failures, affecting a destination prefix, from the loss
of connectivity for a statistically significant number of previ-
ously active flows towards that destination. While possible
in principle, Blink does not look at the flows progression to
detect a failure, as only a subset of the flows may be affected,
e.g., because of load-balancing. This enables Blink to detect
partial failures (see §D).

The detection stage looks for evidence of connectivity dis-
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Figure 4: Blink data-plane workflow and key ingredients.

ruption across the flows identified by the Flow Selector. It
stores key information on the last seen packet for each flow
and determines if a new packet traversing the data-plane
pipeline is a duplicate of the last seen one – an hallmark of
RTO-induced TCP retransmissions (see Figure 2). Based on
this check, for each destination prefix, it monitors the number
of flows with at least one recent retransmission over a slid-
ing time window of limited size (800 ms, by default). When
the majority of the monitored flows experience at least one
retransmission in the same time window, Blink infers a failure.

Rerouting quickly. When Blink detects a failure, the Rerout-
ing Module quickly reroutes traffic by modifying the next-hop
to which packets are forwarded, at line rate. In Blink’s cur-
rent implementation, the decisions of both when to reroute
and to which backup next-hop to reroute are configurable by
the operator based on their policies, as we believe that oper-
ators want to be in charge of this critical, network-specific
operation.

When rerouting, the Rerouting Module sends few flows
to each backup path to check which one is able to restore
connectivity. It then uses the best and working one for all the
traffic. The next-hops are configured at runtime by the opera-
tor to re-align the data-plane forwarding to the control-plane
(e.g., BGP) routes when the control plane has converged.

3.2 Blink, at the network level
The “textbook” deployment of Blink consists in deploying it
on all the border routers of the ISP to track all the transit traffic.
In this deployment, border routers either reroute traffic locally
(if possible) or direct it to another border router (e.g., through
an MPLS tunnel). Of course, nothing prevents the deployment
of Blink inside the ISP as well. In fact, Blink also works for
intra-ISP failures, e.g., local to the Blink node or on the path
from the Blink switch and an ISP egress point.

Blink is partially deployable. Deploying Blink on a sin-
gle node already enables to speed up connectivity recovery
for all traffic traversing that particular node. Also, Blink re-
quires no coordination with other devices: each Blink node
autonomously extracts data-plane signals from the travers-
ing packets, infers major connectivity disruptions, and fast
reroutes accordingly. To avoid forwarding issues, Blink veri-



fies the recovery of connectivity for the rerouted packets by
monitoring the data plane (see §4.4.2).

When rerouting, Blink also notifies the control plane, and
possibly the ISP operator. This enables coordination with the
control plane (e.g., future SDN controllers), such as imposing
the next-hop upon control-plane convergence, or discarding
routes that are not working in the data plane.

4 Data-plane design
In this section, we describe the data-plane pipeline that runs
on a Blink node, its internal algorithms, design choices and
parameter values (that we further discuss in §A). Figure 5
depicts the four main components of the Blink data-plane
pipeline: the Prefix Filter (§4.1), the Flow Selector (§4.2), the
Failure Inference (§4.3), and the Rerouting Module (§4.4).

4.1 Monitoring the most important prefixes
To limit the resources used by Blink, the operator should ac-
tivate Blink only for a set of important prefixes. A sensible
approach would be to activate it for the most popular desti-
nation prefixes, as they carry most traffic, although nothing
prevents the operator to select other prefixes – as long as there
is enough TCP traffic destined to each of them (§6.1.1). To ac-
tivate Blink for a prefix, the control plane adds an entry in the
metadata table at runtime which matches the traffic destined
to this prefix using a longest prefix match. Traffic destined to
a prefix for which Blink is not active goes directly to the last
stage of the data-plane pipeline and is forwarded normally
(i.e., find the next-hop and replace the layer 2 header).

The metadata table attaches to the matched packets a dis-
tinct ID according to their destination prefix. As memory
(e.g., register arrays) is often shared between the prefixes, this
ID is used as an index to the memory. Observe that Blink
could combine prefixes with common attributes (e.g., origin
AS or AS path) and which are likely to fail at the same time by
mapping them to the same ID. This would increase the inten-
sity of the signal, and would allow Blink to cover more traffic.
Additionally, packets that do not carry useful information,
i.e., non-TCP traffic, and certain signaling-only packets such
as SYN and ACK packets with no payload are not considered
by Blink and are directly sent to the final stage.

4.2 Selecting active flows to monitor
Packets destined to a monitored prefix go to the Flow Selector,
which will select a limited number of active flows (64 per
prefix), and keep information about each of them.

Limiting the number of selected flows. Each flow for a
given prefix is mapped to one of the 64 cells of a per-prefix
flow array using a 6-bit hash of the 4-tuple 2. While we expect
many flows to collide in the same cell, only one occupies a
cell. This is enforced by storing the flow_key, namely a 32-bit
hash of the 4-tuple in each cell of the flow array.

2The 4-tuple includes source and destination IP and the port numbers.

Flows colliding in the same cell are possible candidates
to substitute the flow currently occupying that cell when it
becomes inactive. It can happen that two flows mapped to the
same cell have the same flow_key, in which case both would
end up occupying the same cell, causing Blink to mix packets
from two distinct flows and thus preventing it to correctly
detect retransmissions for either flows. However, since we
use a total of 38 bits (6 bits to identify the cell and 32 bits for
the flow_key) to identify each flow, such collisions will rarely
happen. The probability of collision can be computed from a
generalization of the birthday problem: given n flows, what is
the probability that none of them returns the same 38 bit hash

value? This probability is equal to 238!
(238−n)! ∗

1
238n ≈ e−

n(n−1)
2∗238 .

With n = 10,000 flows for a given prefix, the probability to
have a collision is only 0.02%.

Replacing inactive flows. The challenge behind selecting
active flows is that flows have different packet rates, which
also change over time, e.g., an active flow at time t may not be
active anymore at time t +1s. A naive first-seen, first-selected
strategy would clearly not work, because the selected flows
might send packets at such a low rate that they would not
provide any timely information upon a connectivity disruption
– simply because there is no packet to retransmit3.

The Flow Selector monitors the activity of each selected
flow by tracking the timestamp of the last packet seen in the
register last_pkt_ts. As soon as the difference between the
current timestamp and last_pkt_ts is greater than an eviction
timeout, the flow is evicted and immediately replaced by an-
other flow colliding in the same cell. A TCP FIN packet also
causes immediate eviction. Intuitively, flow eviction makes
the Flow Selector work very well for prefixes which have
many high-rate flows at any moment in time, or a decent frac-
tion of long-living ones – which we expect to be often the case
for traffic towards popular destinations. Our evaluation on real
traffic patterns (see §6) confirms that this simple strategy is
sufficient to quickly infer major connectivity disruptions.

Calibrating the eviction timeout. A remaining question
for this component of the pipeline is how to dimension the
eviction timeout. On one hand, we would like to evict flows
as soon as their current packet rate is not amongst the highest
for that prefix. On the other hand though, Blink needs to keep
track of the flows long enough to see the first few packet
retransmissions induced by a RTO expiration upon connectiv-
ity interruptions. Indeed, an eviction timeout of few hundred
milliseconds is likely to be too low in many cases, since a
flow takes at least 200ms to issue the first pair of duplicate
packets4 (see §2). By default, the eviction timeout is set to
2 s , which ensures to detect up to two pairs of consecutive
duplicates for typical TCP implementations.

3Our experimental evaluation in §6 confirms this intuition
4200ms only happens if there is no new packet between the first unac-

knowledged packet and the first retransmission. Also, remember that Blink
considers only consecutive duplicates as packet retransmissions.
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4.3 Detecting failures
We now describe how Blink detects RTO-induced retransmis-
sions on the set of selected flows, and uses this information
to accurately infer failures.

Detecting RTO-induced retransmissions. A partial or
full retransmission of payload of the TCP packet can be de-
tected by comparing, the sum of its sequence number and pay-
load length to the corresponding sum of the previous packet
of the same flow. For example, in Figure 2 when the packet
S:1000 (packet with sequence number 1000) arrives Blink
will store 2100 (sum of sequence number and payload). If
the next arriving packet triggers storing 2100 as well, a re-
transmission is detected. Observe that we store the expected
sequence number per flow instead of the current to account
for cases where a packet is only partially acked.

Our design targets consecutive retransmissions for two
reasons. First, RTO-induced retransmissions are consecutive
(see Figure 2), whereas congestion-induced retransmissions
(i.e., noise) are likely to be interleaved by non-retransmissions,
and hence will (correctly) not be detected. Second, this detec-
tion mechanism requires a fixed number of memory per flow,
regardless the flow’s packet rate.

Counting the number of flows experiencing retransmis-
sions over time. Figure 3 shows that the TCP signal upon
a failure is short and fading over time. To quickly and accu-
rately detect the compounded signal across multiple flows,
we use a per-prefix sliding window. To implement a sliding
window of size k seconds in P4, we divide it in 10 consecutive
bins of 6-bit each, each storing the number of selected flows
experiencing retransmissions during k/10 seconds. As a re-
sult, instead of sliding for every packet received, the sliding
window moves every k/10 seconds period. More bins can
improve the precision but would require more memory. This
design enables us to implement the sliding window in P4
using only three information per prefix: (i) current_index, the

index of the bin focusing on the current period of time, (ii)
sum, the sum of all the 10 bins, and (iii) last_ts_sliding, the
timestamp in millisecond precision5 of the last time the win-
dow slid. The additional 19-bit and 4-bit per-flow information
last_ret_ts and last_ret_bin are also required to ensure that
a flow is counted maximum one time during a time window.
We provide more details about the implementation in §B.

Calibrating the sliding window. The duration of the slid-
ing window affects the failure detection mechanism. A long
time window (e.g., spanning several seconds) has more chance
to include unrelated retransmissions (e.g., caused by conges-
tions), whereas a short time window (e.g., 100ms) may miss
a large portion of the retransmissions induced by the same
failure because of the different RTO timers. We set the dura-
tion of the sliding window to 800ms, with 10 bins of 80ms.
First, because the minimum RTO is 200ms, a 800ms sliding
window ensures to include all the retransmissions induced by
the failure within the first second after the failure. Second,
because under realistic conditions (in terms of RTT [5,18,34]
and RTT variation [5]), flows would often send their first two
retransmissions within the first second after the failure.

Inferring failures. A naive strategy consisting in inferring
a failure when all the selected flows experience retransmis-
sions would result in a high number of false negatives due
to the fact that some flows may not send traffic during the
failure, or simply because some flows have a very high RTT
(e.g., >1s). On the other hand, inferring a failure when only
few flows experience retransmissions may result in many false
positives because of the noise. As a result, by default Blink in-
fers a failure for a prefix if the majority of the monitored flows
(i.e., 32) destined to that prefix experience retransmissions.

5We explain in §B how Blink can obtain millisecond precision



4.4 Rerouting at line rate
As soon as Blink detects a failure for a prefix, it immediately
reroutes the traffic destined to it, at line rate. We first show in
§4.4.1 how Blink maintains the per-prefix next-hops list used
for (re)routing traffic. Then, we show in §4.4.2 how Blink
avoids forwarding issues when it reroutes traffic.

4.4.1 Maintaining the per-prefix next-hops list

To reroute at line rate, Blink relies on pre-computed per-prefix
backup next-hops. The control plane computes the next-hops
consistently with BGP routes and specific policies defined
by the operator. For each prefix, Blink maintains a list of
next-hops, which are sorted according to their preference
(see Figure 2). Each next-hop has a status bit. To reroute
at line rate, Blink deactivates the primary next-hop by setting
its status bit to 1 (i.e., not working). Per-prefix next-hops
are stored in register arrays and are updated at runtime by
the controller, e.g., whenever a new BGP route is learned or
withdrawn. If a next-hop is not directly connected to the Blink
node, Blink can translate it into a forwarding next-hop using
IGP (or MPLS) information, as a normal router would do.

Falling back to the primary next-hop after rerouting.
After an outage, BGP eventually converges and Blink updates
the primary next-hop and use it for routing traffic. However,
Blink cannot know when BGP has fully converged. Our cur-
rent implementation waits for a fixed time (e.g., few minutes,
so that BGP is likely to have converged) after rerouting before
falling back to the new primary next-hop. We acknowledge
that this approach might not be optimal (e.g., it potentially
sacrifices path optimality), but it guarantees packet delivery
by using policy-compatible routes and avoids possible disrup-
tions caused by BGP path exploration [28]. Investigating a
better interaction with the control plane is left for future work.

4.4.2 Avoiding forwarding issues

Since Blink runs entirely in the data plane, it likely reroutes
traffic before receiving any control-plane information possibly
triggered by the disruption. In addition, even when carefully
selecting backup next-hops (e.g., by taking the most disjoint
AS path with respect to the primary path), we fundamentally
cannot have a-priori information about where the root cause of
a future disruption is, or where the backup next-hop sends the
rerouted traffic after the disruption. As a result, Blink funda-
mentally cannot prevent forwarding issues such as blackholes
(i.e., when the next-hop is not able to deliver traffic to the
destination) or forwarding loops to happen. The good news,
though, is that Blink includes mechanisms to quickly react to
forwarding issues that may inevitably occur upon rerouting.

Probing the backup next-hops to detect anomalies.
When rerouting, Blink reacts to forwarding anomalies by prob-
ing each backup next-hop with a fraction of the selected flows
in order to assess whether they are working or not. For exam-
ple, with 2 backup next-hops, one half of the selected flows is

rerouted to each of them. The non-selected flows destined to
this prefix are rerouted to the preferred and working backup
next-hop. Blink does this in the data plane using the per-prefix
next-hops list.

When a backup next-hop is assessed as not working, Blink
updates its status bit. After a fixed period of time since rerout-
ing (1s, by default), Blink stops probing the backup paths and
uses the preferred and working one for all the traffic, includ-
ing the selected flows. If all the backup next-hops are assessed
as not working, Blink reroutes to the primary next-hop and
falls back to waiting for the control plane to converge.

Avoiding blackholes. Blink detects blackholes by looking
at the proportion of restarted flows. After rerouting, Blink tags
a flow as restarted by switching its blackhole bit to 1 as soon
as it sees a packet for this flow which is not a retransmission.
When the probing period is over, Blink assesses a backup next-
hop as not working if less than half of the flows routed to that
next-hop have restarted. The duration of the probing period
(1s) is motivated by our goal of restoring connectivity at a
second-level time scale, while also providing retransmissions
with a reasonable time for reaching the destination through
the backup next-hop and triggering the restart of the flows. For
example, if Blink reroutes 778 ms after a failure (the median
case, see §6.1.1) and assuming a reasonable RTT (e.g., the
median case in [5, 18, 34]), it is likely that the rerouted flows
will send a retransmission and receive the acknowledgment
(if the next-hop is working) within the following 1 s period.

Breaking forwarding loops. Blink detects forwarding
loops by counting the number of duplicate packets for each
flow. The key intuition is that forwarding loops have a quite
strong signature: the same packets are seen over and over
again by the same devices. This signature is very similar to
the TCP signature upon a failure, where TCP traffic sources
start resending duplicate copies of the same packets for every
affected flows, at increasingly spaced epochs. As a result, the
algorithm used by Blink to detect retransmissions also detects
looping packets. To differentiate between normal retransmis-
sions and looping packets, Blink relies on the delay between
each duplicate packet. TCP can send for a flow up to 2 retrans-
missions in 1 s because of the exponential backoff (see §2.1),
whereas a packet trapped in a forwarding loop can be seen
many more times by the Blink node. Hence, Blink counts the
number of duplicate packets it detects for each flow after the
rerouting using the information fw_loops stored in each cell
of the flow array, and tags a backup next-hop as not working
by switching its status bit as soon as it detects more than 3
duplicate packets for a flow rerouted to this backup next-hop.

Observe that this mechanism reacts very quickly to the
most dangerous loops, i.e., the ones that recirculate packets
very fast and hence are most likely to overload network links
and devices. Longer and slower loops are mitigated in at most
1 s, as Blink assumes the respective next-hop cannot deliver
packets to the destination (i.e., there is a blackhole).



5 Implementation
We have fully implemented the data-plane pipeline of Blink
as described in §4 in ≈900 lines of P416 [37] code and in
Python. We have also developed a P4Tofino implementation of
Blink that runs on a Barefoot Tofino switch [8]. Our P4Tofino
implementation currently only supports two next-hops, one
primary and one backup. Unlike our P416 implementation, our
P4Tofino implementation uses the resubmission primitive6 in
two cases: whenever the Flow Selector evicts a flow, or if two
retransmissions from same flow are reported within 800ms,
i.e., the duration of the sliding window. Note that these two
cases only occur for the set of selected flows (i.e., only 64
flows per prefix, see §4.2).

Our implementations of Blink only require one entry in the
metadata table, as well 6418 bits of memory (i.e., registers)
for each prefix monitored. This number is fixed, i.e., only this
amount of memory is required regardless of the amount of
traffic. This is an important feature for a system such as Blink,
which is intended to run on hardware with strong limitations.
On current programmable switches, we expect Blink to sup-
port at least 10k prefixes. We explain in §C how we precisely
derive the resources required by Blink.

6 Evaluation
We evaluate Blink’s accuracy, speed, and effectiveness in se-
lecting a working next-hop based on simulations and synthetic
data (§ 6.1, § 6.2). We then evaluate Blink using real traces
and actual hardware (§ 6.3).

6.1 Blink’s failure detection algorithm
Packet traces of real Internet traffic are hard to gather, and for
the few traces publicly available [9, 12], there is no ground
truth about possible remote failures on which Blink should
reroute. Still, it makes little sense to evaluate Blink on traffic
with non-realistic characteristics, or without knowing if Blink
is correctly or incorrectly rerouting packets. We therefore
adopt the following evaluation methodology.

Methodology. We consider 15 publicly available traces [9,12]
(listed in §E), accounting for a total of 15.8 hrs of traffic and
1.5 TB of data. For each prefix, we extract the distributions of
flow size, duration, average packet size, and RTT.7 We then
run simulations with ns-3 [3] on a dumbbell topology similar
to [38], where traffic sources generate flows exhibiting the
same distribution of parameters than the one extracted from
the real traces.

In some of our simulations, we introduce a failure after 10
seconds on the single link connecting the sources with the
destinations, thus affecting all flows. We refer the reader to §D
for an evaluation on partial failures. In other experiments, we

6A resubmitted packet goes twice in the ingress to take more actions
while being forwarded by the switch.

7To measure the RTT of the flows, we use the time difference between
the SYN and ACK packets sent by the initiator of a connection as described
in [22, 34].

introduce random packet drops and no failure at all. We collect
traffic traces for all simulations, feed them to our Python-
based implementation of Blink one by one, and check if and
when our system would fast reroute traffic.

Baselines. Since we are not aware of any previous work on
real-time failures detection on the basis of TCP-generated
signals, we compare Blink against two baseline strategies.
The first strategy, All flows, consists in monitoring up to 10k
flows for each prefix, and rerouting if any 32 of them sees
retransmissions within the same time window. This strategy
provides an upper bound on Blink’s ability to reroute upon
actual failures while ignoring memory constraints. The second
strategy, ∞ Timeout, is a variant of Blink where flows are only
evicted when they terminate (with a FIN packet), and never
because of the eviction timeout. This strategy assesses the
effectiveness of Blink’s flow eviction policy.

6.1.1 Blink often detects actual failures, quickly

We first evaluate Blink’s ability to detect connectivity disrup-
tions. For each real trace in our dataset, we randomly consider
30 prefixes which see a large number of flows (> 1000 flows
in the trace), and we generate 5 synthetic traces per prefix,
each with a different number of flows starting every second
(from 100 to 500 flows generated per second) and each con-
taining a failure at a preconfigured moment in time.

We then compute the True Positive Rate (TPR) of Blink
on these traces. For each synthetic trace, we check whether
Blink detects the failure (True Positive or TP) or not (False
Negative or FN). The TPR is computed over all the tested
synthetic traces, and is equal to T P/(T P+FN).

Figure 6a shows the TPR of Blink and our baseline strate-
gies as a function of the real trace used to generate the syn-
thetic ones. As expected, the All flows strategy exhibits the
best TPR among the three considered strategies at the cost
of impractical memory usage. We see that Blink has a TPR
which is very close to (i.e., less than 10% lower than) the All
flows strategy—while tracking only 64 flows. Overall, Blink
correctly reroutes more than 80% of the times for 13 traces
out of 15, with a minimum at 65% and a peak at 94%. At the
other extreme, the TPR of the ∞ Timeout strategy is much
lower than Blink, below 50% for most traces, highlighting the
importance of Blink’s flow eviction policy.

As the RTT of the flows affects the failure signal used by
Blink to detect failures (see §2.1), we also look at the TPR as
a function of the RTT. On the synthetic traces with a median
RTT below 50 ms (resp. above 300 ms), Blink has a TPR of
90.6% (resp. 76.0%). This shows that Blink is useful even
when flows have a high RTT.

As a follow-up, we then analyzed how much Blink’s TPR
varies with the number of flows active upon the failure (an
important factor for Blink’s performance). Figure 6b shows
that Blink’s TPR unsurprisingly increases if there are more
flows active during the failure. With very few active flows,
Blink cannot perform well, since the data-plane signal is too
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Figure 6: Blink has high TPR when relatively few flows
(e.g., more than 350) are active upon the failure.

weak. However, Blink’s TPR is already around 74% when
about 350 flows are active, and reaches high values (more
than 90%) with about 750 active flows. Again, Blink is much
closer to the All flows strategy than to the ∞ Timeout one,
although the All flows strategy reaches higher levels of TPR
for lower number of active flows. These results suggest that
Blink is likely to have a high TPR in a real deployment since
we expect to see �750 active flows for popular destinations.

Not only does Blink detect failures in most cases, but it also
recovers connectivity quickly upon failure detection. Figure 7
shows the time needed for Blink to restore connectivity for
each of the real traces used to generate the synthetic ones,
restricting on the cases where Blink detects the failure. Each
box shows the inter-quartile range of Blink’s reaction time.
The line in each box depicts the median value; the whiskers
show the 5th and 95th percentile. Blink retrieves connectivity
in less than 778 ms for 50% of the traces, and within 1 s for
69% of the traces. The All flows strategy restores connectivity
within 365 ms in the median case, whereas the ∞ Timeout
strategy needs 1.07 s (median). Naturally, Blink is faster when
the RTT of the flows is low. On the synthetic traces with a
median RTT below 50 ms, Blink reroutes within 625 ms in
the median case. Yet, when the median RTT is above 300 ms,
Blink is still fast and reroutes within 1.2 s in the median case.

6.1.2 Blink distinguishes failures from noise

One may wonder if Blink’s ability to detect failures may not be
due to it overestimating disruptions. By design, Blink cannot
detect a failure without TCP retransmissions. Hence, the ques-
tion is if Blink tends to overreact to relatively few, unrelated
retransmissions, e.g., induced by random packet loss.

To verify this, we generate synthetic traces with no failure
but with an increasing level of random packet loss (from
1% to 9%) for all traffic. The trace synthesis follows our
methodology of mimicking characteristics of real traffic for
one prefix. For each real trace and loss percentage, we repeat
the trace generation for 10 randomly extracted prefixes which
see a large number of flows. For this experiment, we generate
traces from 1-minute simulations where many (i.e., 500) new
flows start every second to ensure that Blink’s Flow Selector
is filled with flows, all potentially sending retransmissions.

Figure 7: Blink is fast, for all traffic patterns.

For all these synthetic traces, we check whether Blink de-
tects a failure (FP) or not (TN) and compute the False Positive
Rate (FPR) as FP/(FP+T N). Contrary to what happens for
the TPR in §6.1.1, we expect All flows to be a worst case sce-
nario as it sees all the retransmissions across all flows. On the
other hand, ∞ Timeout should perform better than Blink be-
cause inactive flows (which are not evicted) do not contribute
to the number of observed retransmissions.

Table 1 shows the FPR as a function of packet loss. Below
4% packet loss, Blink never detects failures. Between 4% and
7%, Blink incorrectly detected a failure for one synthetic trace
out of the 150 generated. This indicates that Blink would work
well under realistic traffic (we confirm this in §6.3.1), where
the packet loss is often below these values. As a reference,
the All flows strategy has an extremely high FPR, around 60%
(resp. 85%) for traces with 1% (resp. 2%) packet loss. The ∞

Timeout strategy has only one false positive when the packet
loss is between 5% and 10%, which, rather than a feature, is
an artifact of tracking non-active flows.

Summary. Our results show that Blink strikes a good balance
between detection of actual failures and robustness to noise
(i.e., TCP retransmissions not originated from a prefix-wide
connectivity disruption). Blink’s tradeoff is much better than
the naive strategies: not evicting flows would significantly
lower Blink’s ability to correctly reroute upon failures, while
monitoring all crossing flows comes with high sensitivity to
noise (in addition to a likely impractical memory cost). Blink
also recovers connectivity quickly (often within 1 s in our
experiments) when it detects a disruption.

6.2 Blink’s rerouting algorithm
We now focus on the Blink’s Rerouting Module. Our design
ensures that rerouting is done entirely in the data plane, at line
rate —we confirm this by experimenting with a Tofino switch,
as described in §6.3. In this section, we therefore evaluate
whether Blink is effective in rerouting to a working next-hop.

Methodology. We emulate the network shown in Figure 8 in a
virtual machine attached to 12 cores (2.2 GHz). The P4 switch
has three possible next-hops to reach the destination, R1 being



packet loss % 1 2 3 4 5 6 7 8 9

False Positive Rate (%)
Blink 0 0 0 0.67 0.67 0.67 0.67 1.3 2.0
All flows 59 85 93 94 95 96 97 97 98
∞ timeout 0 0 0 0 0.67 0.67 0.67 0.67 0.67

Table 1: Blink avoids incorrectly inferring failures when
packet loss is below 4%.

the primary next-hop, R2 the most preferred backup next-hop
and R3 the less preferred backup one. R1 and R3 use R5 as
next-hop to reach the destination. R2 uses a different next-hop
to reach the destination depending on the experiment, thus
we do not depict it in the figure.

We emulate the P4 switch by running our P416 implemen-
tation of Blink in the P4 behavioral model software switch [4].
The P4 switch running Blink is linked to a Mininet network
emulating the other switches. The source and the destination
are Mininet hosts running TCP cubic.

We start 1000 TCP flows from the source towards the des-
tination. To show the effectiveness of the Flow Selector, 900
flows have a low packet rate (chosen uniformly at random
between 0.2 and 1 packet/s) while only 100 have a high packet
rate (chosen uniformly at random between 2.5 and 20 pack-
et/s). We use tc to control the per-flow RTT (chosen uni-
formly at random between 10 ms and 300 ms), and to drop 1%
of the packets on the link between R5 and the destination in
order to add a moderate level of noise. We first start the 900
flows with a low packet rate, so that the Flow Selector first
selects them. Right after, we start the 100 remaining flows.
Finally, after 20 s to 30 s, we fail the link between R1 and R5.

Blink quickly detects and breaks loops. We configure R2
to use the P4 switch as next-hop to reach the destination so
that it creates a forwarding loop (by sending traffic back to the
source) when Blink reroutes traffic to R2. Figure 9a shows the
traffic captured at R1, R2 and R3 (top) and at the destination
(bottom). Prior the failure, the traffic goes through R1, the
primary next-hop. Upon the failure, Blink probes if any of
the available next-hops can recover connectivity: it sends half
of the flows in the Flow Selector to R2 and the other half to
R3. All the remaining flows go to R2 (preferred over R3).
Blink detects the forwarding loop induced by R2 very quickly
(only 8 packets were captured on R2) and immediately deac-
tivates this next-hop to reroute all the traffic to R3, restoring
connectivity within a total of 800 ms.

Blink quickly detects and routes around blackholes. In a
separate experiment, we configure R2 to use R5 as next-hop,
and we fail the link between R2 and R5 in addition to the one
between R1 and R5. Figure 9b shows the traffic captured at
R1, R2 and R3 (top) and at the destination (bottom). Upon the
failure, Blink reroutes to R3 half of the selected flows, and to
R2 the other half of the selected flows plus all the non-selected

Figure 8: The network used to evaluate Blink’s rerouting.
Arrows indicate forwarding next-hops (R2 uses different next-
hops depending on the experiment).

ones (since R2 is preferred over R3). However, because the
link between R2 and R5 is down, the packets sent to R2 are
just dropped by R2. After 1 s, Blink detects the blackhole and
reroutes all the traffic to R3, restoring connectivity. The total
downtime induced by the failure is 1.7 s.

6.3 Blink in the real world
So far, we have evaluated Blink with simulations and emu-
lations. We now report on experiments that we run on real
traffic traces and on a Barefoot Tofino switch.

6.3.1 Running Blink on real traces

In §6.1, we use simulated (but realistic) traffic traces to gain
some confidence on Blink’s accuracy in detecting connectivity
disruptions. An objection might be that our synthetic traces
are not fully realistic. We therefore run Blink on the original
real traces listed in §E and tracked when it detects a failure8.
Observe that unlike in §6.1, here we do not simulate failures.
Since we do not have ground truth about actual failures in
real traces, we manually checked each case for which Blink
detected a failure so as to confirm the connectivity disruption.

Over the 15.8 hrs of real traces, Blink detected 6 failures.
In these 6 cases, the retransmitting flows represent 42%, 57%,
71%, 82%, 82% and 85% of all the flows active at that time
and destined to the affected prefix. These numbers confirms
that Blink is not sensitive to normal congestion events, and
only reroutes in cases where a large fraction of flows experi-
ence retransmissions at the same time.

6.3.2 Deploying Blink on Barefoot Tofino switches

We finally evaluate our P4Tofino implementation of Blink on a
Barefoot Tofino Wedge 100BF-32X. To do so, we generate
TCP traffic between two servers connected via our Tofino
switch running Blink. The server receiving the traffic has a
primary and a backup physical link with the Tofino switch.
We generate 1000 flows, 900 of which have a low packet rate
and 100 a high one (similarly to §6.2). To show the influence
of the RTTs on Blink when running on Tofino, we run two
experiments, one with sub-1ms RTT, and another one in which
we use tc to simulate for each flow an RTT chosen uniformly
at random between 10 ms and 300 ms. After 30 s, we simulate

8We omitted failures detected for 73 prefixes (out of 2.28M) which con-
stantly showed high-level of retransmissions (>20% of the flows retransmit-
ting >50% of the time). Blink could detect such outliers at runtime.



(a) Blink quickly breaks loops (b) Blink reacts to blackholes

Figure 9: Traffic measurements quantifying Blink’s speed in
reacting to forwarding anomalies upon rerouting.

a failure on the primary path, and measure the time Blink takes
to retrieve connectivity via the backup link.

Blink-Tofino managed to restore connectivity in <1s.
Blink retrieves connectivity in only 460ms with sub-1ms RTT,
and in about 1.1 s when the RTT of the flows is between 10 ms
and 300 ms. We obtain comparable results (470 ms of down-
time with sub-1 ms RTT) when running the same experiments
with 3,000 flows among which 300 has a high packet rate.

7 Deployment considerations
We now discuss three possible operational concerns when
deploying Blink in a real ISP network: security, adaptability
and interaction with deployments of Blink in other ISPs.

Security. As potentially any Internet user can generate data-
plane traffic, security could be a concern for running Blink
in operational networks. The main threat is that malicious
users could manipulate Blink to reroute traffic by sending
fake retransmissions for flows towards a victim destination.

Blink’s design itself significantly mitigates security risks.
For any given destination, Blink reroutes traffic if most of
the 64 monitored flows retransmit nearly at the same time.
The monitored flows are selected among all active flows for
the given destination, and flows sending more packets are
intuitively privileged by the Flow Selector substitution policy.
Hence, a brute-force attack would have to generate an amount
of traffic comparable to the legitimate traffic destined to the
attacked prefix in order to have a reasonable success chance.
The fact that Blink focuses on popular destinations, typically
attracting large traffic volumes and many flows, implies that
the attacker would have to generate lots of traffic to trick Blink–
a condition under which the attack would be quite visible,
could be monitored and potentially mitigated at runtime.

A Blink-savvy attacker could instead produce few flows
with a high and constant packet rate, and which never termi-
nate, so that when one of them is selected by the Flow Selector,
it remains selected forever. Blink will eventually monitor 32
of them, making the attacker ready to operate. However, Blink
is built to evict a flow, even if active, after a fixed time (8.5 min
by default, see §C). This implies that the attacker only has

Figure 10: A Tofino switch running Blink retrieves connec-
tivity within 460 ms if the RTT of the affected flows is below
1 ms (top figure); or within 1.1 s if the per-flow RTT ranges
between 10 ms and 300 ms (bottom figure).

a short time window during which she can perform the at-
tack. Evicting active flows more frequently (e.g., every few
seconds instead of 8.5 min) would better prevent such attacks,
but would affect the failure detection mechanism of Blink
because some retransmissions can be missed.

While the above mechanisms do not make Blink bullet-
proof, we believe that they make our system’s attack surface
reasonably small. We plan to perform a deeper analysis of
Blink’s security concerns in future work.

Adaptability. Clearly, a challenge in a real deployment of
Blink is how to set its parameters correctly (see §A). This
is hard because operators have different requirements, and
traffic can exhibit varying characteristics. In §6, we show that
it is definitely possible to set the parameter values so that
Blink works well in real situations. Yet, in a real deployment,
we envision that Blink could first be run in “learning mode”,
where it sends notifications to the controller instead of rerout-
ing traffic. The controller then evaluates the accuracy of the
system, for instance using control-plane data, and turns Blink
on if the accuracy is good, or tune some parameters otherwise.

Internet scale deployment. So far, we have described Blink’s
deployment in a single network (see §3). Of course, all ISPs
have the same incentives to deploy Blink (i.e., for fast con-
nectivity recovery), so we envision that multiple, possibly
all, ISPs might deploy Blink. Multi-AS deployment of Blink
makes rerouting trickier. For example, if an Internet path tra-
verses multiple Blink switches, it is not clear which ones will
reroute, and whether the resulting backup path will be opti-
mal. Blink switches can also interfere with each other. For
example, if a Blink switch reroutes traffic to a backup path, a
downstream Blink switch in the original path may lose part
of the data-plane signal, preventing it to detect the failure.
Finally, Blink’s rerouting can also increase the likelihood of
creating inter-domain loops, since Blink selects backup next-



hops based on BGP information, which might not be truthful
if the downstream switches also run Blink.

While a full characterization of Blink’s behavior in an
Internet-scale deployment is outside the scope of this pa-
per, Blink’s design already guarantees some basic correctness
properties. Blink already monitors for possible forwarding
loops, and quickly breaks them by using additional backup
next-hops (see §4.4.2). After having explored all possible
backup next-hops, Blink also falls back to the primary next-
hop indicated by the control-plane, even if not working: this
would prevent oscillations where two or more Blink switches
keep changing their respective next-hops in the attempt to
restore connectivity. Finally, Blink switches do use BGP next-
hops after BGP convergence.

Path optimality is much harder to guarantee within a sys-
tem like Blink, where network nodes independently reroute
traffic, without any coordination. However, we believe that
path optimality can be transiently sacrificed 9 in the interest
of restoring Internet connectivity as quickly as possible.

8 Related Work
We now discuss related work beyond fast reroute frameworks
for local failures (such as [14, 29, 35]), which we already
discussed in the introductory section.

Recent research explores how to quickly localize remote
inter-domain failures and reroute upon them, assuming no
data-plane programmability. Prominently, ARROW [30] uses
tunnels between endpoints and ISPs in combination with spe-
cial control-plane packets. Gummadi et al. [17] infer failures
from the data plane, and attempt to recover connectivity by
routing indirectly through a small set of intermediaries. Sev-
eral other approaches (e.g., [13, 19, 21]) infer connectivity
problems from BGP messages. Some of them also diagnose
these problems and fast-reroute upon their detection. By infer-
ring failures from data-plane packets, Blink is fundamentally
faster than control-plane based solutions (by minutes, e.g., in
Figure 1). Also, unlike [17,30], Blink is deployable on a single
node, and does not require interaction with other devices.

Data-Driven Connectivity [25] (DDC) ensures connectiv-
ity within a network via data-plane mechanisms. Chiesa et
al. [11] consider generalizations of the DDC approach, and
study the relationship between the resilience achieved through
data-plane primitives and network connectivity. The work
from Sedar et al. [33] shows how to program a hardware
switch so that it automatically reroutes the traffic to a working
path upon failure of directly connected links. In contrast to the
above line of work, Blink fast recovers upon failures occur-
ring in other networks, and uses data-plane programmability
to detect connectivity disruptions rather than to dynamically
configure post-failure paths.

Data-plane traffic has also been widely used in the past for

9Even with an Internet-wide deployment of Blink, path optimality will be
restored when the control plane converges to post-failure paths, or operators
will manually solve connectivity disruptions after Blink’s notifications.

ex-post measurement analyses. For example, WIND [20] in-
fers network performance problems, including outages, from
traffic traces by leveraging (among others) structural charac-
teristics of TCP flows. In Blink, we perform online packet
analysis, at line rate, but only to infer major connectivity dis-
ruptions – with simple yet effective algorithms that fit the
limited resources of real switches.

Few approaches monitor traffic using a programmable data
plane. DAPPER is an in-network solution using TCP-based
signals to identify the cause of misbehaving flows (whether
the problem is in the network or not) [16]. Blink does not
aim at identifying the cause of a particular flow failing but
rather that many flows (for the same prefix) fail at the same
time. In addition, unlike Blink, DAPPER requires symmetric
routing for its analysis, which is often not the case in ISP
environments. Sivaraman et al. [36] propose a heavy-hitter
detection mechanism running entirely in the data plane. As
Blink, it stores flows in an array and relies on flow eviction
to keep track of the heaviest ones. Unlike [36], Blink looks
for active flows instead of the heaviest ones, on a per-prefix
basis.

Recent work from Molero et al. [26] shows that key control-
plane tasks such as failure detection, notifications and new
path computations can be offloaded to the data plane. Such
systems could directly benefit from Blink, e.g., by leveraging
it to detect remote failures and trigger network-wide conver-
gence accordingly.

9 Conclusions
Blink is the first data-driven fast-reroute framework targeting
remote connectivity failures. By operating entirely in the
data plane, at line rate, Blink restores connectivity in O(s).
We evaluate Blink with realistic traces, taking into account
different traffic conditions as well as noise due to significant
packet loss. Our results show that Blink enables sub-second
connectivity retrieval in the majority of the scenarios, while
preventing unnecessary traffic shifts in the presence of noise.
By deploying Blink on a Barefoot Tofino switch, we also
confirm that it can run in commercial programmable devices.
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Appendix
A Blink parameters
In this section, we list in Table 2 the main parameters used by
Blink, and show how each of them can affect the performance
of the system. We denote as TPR the True Positive Rate over
all the synthetic traces generated from the 15 real traces listed
in Table 3 and used in §6.1.1. The TPR with Blink’s default
values over all the synthetic traces is 83.9%. FPR denotes the
False Positive Rate and is computed similarly as in §6.1.2.

B Implementation of a sliding window in P416

In this appendix section, we show how we implemented a
sliding window in the P416 language.

Blink uses one sliding window per prefix to count the num-
ber of flows experiencing retransmissions over time among
the selected flows (§4.3). Besides the 10 bins, Blink needs
three other meta-information: (i) current_index, the index of
the bin focusing on the current period of time, (ii) sum, the
sum of all the 10 bins and (iii) last_ts_sliding, the timestamp in
millisecond precision of the last time the window slid. When
Blink detects a retransmission, it increments by one both the
value associated with the bin at the index current_index and
the sum. Upon reception of a packet at timestamp t, and
assuming the window covers a period of k millisecond, if
t − last_ts_sliding > k/10, the window slides by one doing
the following operations. To find the index of the bin that
has expired, Blink computes (current_index+ 1) mod 1010.
Then, it subtracts to sum the value stored in the expired
bin, and then resets it. Then, Blink makes current_index
point to the expired bin and finally updates last_ts_sliding
to last_ts_sliding + k. As a result, the counter sum always
returns the number of flows experiencing retransmissions dur-
ing the last 9/10k to k seconds.

It can happen that a flow sends several retransmissions
within a time window. To avoid summing several retransmis-
sions from same flow within the same time window, Blink
uses two additional per-flow metadata called last_ret_ts and
last_ret_bin. The former stores the timestamp of the last re-
transmission reported for the corresponding flow. The later
stores the bin index corresponding to this timestamp. Con-
sider that a retransmission for a flow is reported at time t, then
if t − last_ret_ts < k, Blink decrements by one the value in
the bin at the index last_ret_bin, and increments by one the
value associated to the current bin. The sum remains the same,
and last_ret_ts is set to the current timestamp and last_ret_bin
is set to the current bin index.

C Hardware Resource Usage
Blink is intended to run on programmable switches with lim-
ited resources. As a result, we designed Blink to scale based

10As the modulo operator is not available in P416, we implement this with
if-else conditions.

(a) Accuracy (b) Speed

Figure 11: Blink is accurate and fast even for partial failures
affecting 70% or more of the flows.

on the number prefixes it monitors, and not on the actual
amount of traffic destined to those prefixes. In this section, we
derive the resources required by Blink to work for one prefix,
and show that it can easily scale to thousands of prefixes.

First, for every prefix, Blink needs one entry in the meta-
data table. Then, for each selected flows, the Flow Selector
needs 99 bits (see Figure 5). As Blink monitors 64 flows
per prefix, a total of 64∗99 = 6336 bits are required for one
prefix. To save memory, Blink does not store the timestamps
(e.g., last_pkt_ts and last_ret_ts) in 48 bits (the original size
of the metadata), but instead approximates them using only
9 bits for seconds and 19 bits for milliseconds. To obtain the
second (resp. millisecond) approximation of the current times-
tamp, Blink shifts the original 48-bit timestamp to the right.
To fill in 9 (resp. 19) bits, Blink also resets the timestamps
every 512 s (≈ 8.5min) by subtracting to the original 48-bit
timestamp a reference_timestamp. The reference_timestamp
is simply a copy of the original 48-bit timestamp (stored in a
register shared by all the prefixes) that is updated only every
512 s. Note that the Flow Selector evicts a flow if the current
timestamp is lower than the timestamp of the last packet seen
for that flow, which happens whenever the timestamps are
reset (i.e., every ≈ 8.5min). This is actually good for security,
as we explain in §7.

The sliding window requires 10 bins of 6 bits each, as
well as 4+ 9+ 6 = 19 bits to store additional information
(see Figure 5), making a total of 79 bits. For the rerouting,
Blink only requires 1 status bit per next-hop. With three next-
hops, 3 extra bits are required. In total, for one prefix, Blink
requires 6336+79+3 = 6418 bits. As current programmable
switches have few megabytes of memory, we expect Blink to
support up to 10k prefixes, possibly even more.

D Evaluating Blink on partial failures
In this section, we evaluate the performance of Blink upon
partial failures, and compare it to our two baselines, the All
flows and ∞ Timeout strategies. We consider partial failures
to be those affecting only a portion of the traffic (e.g., due to
load-balancing).

For this evaluation, we randomly picked 10 prefixes from



Component Name Default value Tradeoff

Flow Selector
§4.2

Eviction
timeout

2s

With a short eviction time (e.g., 0.5s) flows can be evicted
while they are retransmitting, reducing the TPR to 66.3%.
With a longer eviction time (e.g., 3s) inactive flows take more time
to be substituted by active ones, reducing the TPR to 77.7%

Number of cells
per prefix

64

Monitoring a small fraction of flows may result in a FPR increase.
For example, with only 16 cells, the FPR is 2% for only a 3% of packet
loss. However, the bigger the number of cells the smaller the amount of
prefixes we can monitor due to memory constrains. With 64 cells (=64
flows monitored per prefix) Blink can support at least 10k prefixes.

Failure Inference
§4.3

Sliding window
duration

800ms

A long time window (e.g., 1.6s) is more likely to report all the
retransmitting flows, increasing the TPR to 89.8%, but also reports
more unrelated retransmissions, increasing the FPR (0.67% for 3%
of packet loss). A shorter time window (e.g., 400ms) limits
the FPR (0% for 9% of packet loss) but decreases the TPR to 49.4%.

Sliding window
number of bins

10
More bins increases the precision, at the price of using slightly
more of memory. 10 bins give a precision > 90%.

Inference
threshold

50%
A lower threshold, such as 25% (i.e., 16 flows retransmitting when
using 64 cells) gives a better TPR (94.8%), but increases the FPR
to 7.3% for 4% of packet loss.

Rerouting Module
§4.4

Backup next-hop
probing time

1s
A longer probing period better prevents wrongly assessing a next-hop
as not working, at the price of waiting more time to reroute.

Table 2: Parameters used by Blink, with their default values, and how they can affect the performance of the system.

each real trace listed in Table 3, and generated 1 synthetic
trace for each of them, following the guidelines described
in §6.1. For each trace, we simulated partial failures with 9
different intensities (from 10% to 90% of the flows being
affected). For these synthetic traces, 1223 flows (resp. 264)
were active upon the failures in the median case (resp. 10th
percentile).

Blink works in the majority of the cases for failures affect-
ing 70% or more of the flows. Figure 11a shows the TPR of
Blink as a function of the percentage of flows affected by the
failure. Unsurprisingly, because Blink needs to detect at least
32 flows experiencing retransmissions to detect the failure,
the TPR is close to 0% if the failure affects less than 50% of
the flows. For failures affecting 70% of the flows (resp. 90%),
Blink works for 53% (resp. 77%) of the failures. The All flows
strategy performs well even for small failures affecting 20%
of traffic, whereas the ∞ Timeout performs badly even for

failures affecting 90% of the traffic.

Blink restores connectivity within one second in the me-
dian case for failures affecting at least 70% of the flows.
Figure 11b shows the time needed for Blink to restore con-
nectivity upon a partial failure. Logically, as we decrease
the amount of affected flows, the detection speed of Blink
increases. Yet, Blink is able to restore connectivity within 1 s
for the majority of the cases if a failure affects 70% of the
flows or more.

E Real traces used in the evaluation
In order to evaluate Blink with different traffic patterns (see
§6), we use 15 real traces from different years, captured on
different links and provided by different organizations, namely
CAIDA [9] and MAWI [12]. Table 3 lists them and some of
their characteristics.



Trace ID Name Date Duration Bit Rate Trace Size RTT median

1 caida-equinix-chicago.dirA 29-05-2013 3719 s 1631 Mbps 67 GB 200.22 ms

2 caida-equinix-chicago.dirB 29-05-2013 3719 s 2119 Mbps 73 GB 155.65 ms

3 caida-equinix-sanjose.dirA 21-03-2013 3719 s 2920 Mbps 122 GB 104.94 ms

4 caida-equinix-sanjose.dirB 21-03-2013 3719 s 1618 Mbps 82 GB 191.11 ms

5 caida-equinix-chicago.dirA 19-06-2014 3719 s 1629 Mbps 60 GB 209.72 ms

6 caida-equinix-chicago.dirB 19-06-2014 3719 s 6271 Mbps 163 GB 160.91 ms

7 caida-equinix-sanjose.dirA 19-06-2014 3719 s 3722 Mbps 144 GB 169.71 ms

8 caida-equinix-chicago.dirA 17-12-2015 3776 s 2540 Mbps 111 GB 240.18 ms

9 caida-equinix-chicago.dirB 17-12-2015 3776 s 3151 Mbps 99 GB 68.30 ms

10 caida-equinix-chicago.dirA 21-01-2016 3819 s 2250 Mbps 126 GB 224.09 ms

11 caida-equinix-chicago.dirB 21-01-2016 3819 s 4959 Mbps 143 GB 69.57 ms

12 caida-equinix-nyc.dirA 15-03-2018 3719 s 3027 Mbps 94 GB 306.76 ms

13 caida-equinix-nyc.dirA 19-04-2018 3719 s 3893 Mbps 125 GB 283.82 ms

14 mawi-samplepoint-F 12-04-2017 7199 s 878Mbps 74 GB 124.14 ms

15 mawi-samplepoint-F 07-05-2018 900 s 1098 Mbps 10 GB 156.20 ms

Total 15.8 h 1.5 TB

Table 3: List of 15 real traces that we use to evaluate Blink. Altogether, they cover a total of 15.8 hrs of traffic.
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